o ay s

D e T I DI L I Pt - R T T meToe s

AD638446

MAC-TR-32 {THESIS)

PILOT: A STEP TOWARD MAN-COMPUTER SYMBIOSIS.
- by

Warren 'rei_te iman

September 1966 ;

D ArAnn "f.‘r.'r
| SEP 19 196G *

Ptojeét MAC .. - e e W \—“—-'

MASSACHUSETTS INSTITUTE OF TECHNOLOGY |

QD030

i e T .
S 3510w fo. - P S

' "g ;leﬁ'ﬁ *’r

B -nosoze 7 0l
& s Tand LALCER

I 2ot W ol

FThIERTIoR, AVLIADILITY €003
33T, | AVALL sad/er BPESIAL

.Efzsachuaetts Institute of Technology
' Project MAC
545 Technology Square
Cambridge, Massachusetts
02139

Work reported herein was suprorted in part by Project
‘MAC, an M.I,T. research project sponsored by the Advancad
Rasearch Projects Agency, Department of Defense, under
Office of Naval Research Contract Nonr=-4102{01).
rsproduction of thie report, in whole or in part, is
peimittad for any purpcose of the Unitsd Scates Government,

Government contractors may cbtain coples of this report from
the Pefensa Documsntation Centar, Documsnt Bervice Center,
Camaron Station, Alexsndria, Virginiz 22314, Ozdaers will bde
oxpedited from DDC if placed by your 1librarien, or scaoe othar
person suthorized to request documaate,

Othar U.8, citizens and organizations may obtain copies of
this report from the Clesringhouse for Federal Sclenti®ic and
Tochnical Information (CPSTI), 8ills Bulilding, 5285 Pori Royal
Road, Springfield, Virginia 22151,

Z Y

. - o R Ll 1 s) -, » ":--W-m~ T e -y gin

t

o

i
FILOT: A STCP TCWRD
MAN-COMPUTER SYMBIOSIS

3 i i
f
i

l
Warren Teitelman

| ,
: B.S., California Institute of Technology
by (1962)
; | |
8§.M., Massachusetts inatitute of Technology
(%963)

%l SUBMITTED IN PARTIAL FULFILLMENT

* OF THE REQUIREMENTS FOR THE
DEGREE OF DOCTOR OF
PHILOSOPHY
‘ at the
g MASSACHUSETTS INSTITUTE OF
TECHNWLOGY
s September, 196¢€
.4
Signature of Author....)0(?Lff??.....f?Z;ngTf.‘..............
Department of Mathematics, June 14, 1965
Certified by..........f?)?lﬁ:/&@"”l r)’ﬁ!&ﬁﬂ... eererreenne
i The 8 Supervisor
“ 4;{14«Aa44“ ' '
Chairman, Departméﬁtal COQQiétéé
on Qraduate Students
|
i
- - - - e e

i
Ty A MR S ST b WAL 1 3 A B g 0, s s <+ PR O i - - - A""M‘~ @W. Dok . emeaa

L B

PILOT: A Step Toward Man-Computer Symbiosis
by

Warren Teitelman

Submitted to the Department of Mathematics on June 14, 1966, in

partial fulfillment of the requirements for the degree of Doctor

of Philosophy.

ABSTRACT

P1LOT is a programming system constructed in LISP. It is
designed to facilitate the development of programs by easing tue
familiar sequence: write some code, run the program, make some
changes, write some more ccde, run the program again, etc. As a
program becomes more comple.., making these changes becomes harder
and harder because the implications of changes are harder to enti-

cipate,

In the PILOT gystem, the computer plays an active role in this
evolutionary process by providing the means whereby changes can be
effected immediately, and in ways that seem natural to the user.
The user of PILOT feels that he is giving advice, or making sug-
gestions, to the computer about the operation of his programs,
and that the system thzn performs the work necessary. The PILOD
system is thus an interface between the user and his program,
monitoring both the requests of the user and the operation of his

program,

The user may easily modify the PILOT system itself by giving
it advice about its own operation. This allows him to develop his
own language and to shift gradually onto PILOT the burden of per=-
forming routine but increasingly complicated tasks. In this way,
he can concentrate on the conceptual difficulties in the original
problem, rather than on the niggling tasks of editing, rewriting,
or adding to his programs. Two de+ailed examples are presenced.

PILOT is # first step toward computer systems that will help
man to formulace problems in the same way they now help him to
solve them, Eyperience with it supports the claim that such “symb~
iotic systems” allow the programmer to attack and solve more dif--
ficult orchlems.

Thesis Supervisgor: Marvin L. Minsky

Title: Professor of Electrical Engineering

B

Y il F BT NS G i b B s BB Y L S # o e TR D 4 IR A L 0 e e e s, [N

AU R e ¥ i R TRV

e i ek e g s

ACKNOWLEDGEMENTE

The work herein was suppori~d in part by Project MAC, an MIT re-
search program sponsored o+ the Advanced Research Projects Agency,
Department of Defense, under Office of Naval Research Contract
number Nonr-4102(01), in part by the National Science Foundation
Fellowship Program, and in part by Bolt Beranek and Newman, Inc.,
Cambridge, Massachusetts, under the Advanced Research Projects
Agency, Contract No. AF19(628)-5065. Reproduction in whole or

in part is permitted for any purpose of the United States Govern~-
ment.

1 wish to express my gratitude to Marvin Minsky, for his super-
vision of this thesiz, and to Seymour Papert and Oliver Selfridge,
the other members of my thesis committee, for their critical read-
ing of the manuscript. Oliver Selfridge's interest in the project
and personal encouragement went far beyond the call of duty, It
would be impossible to acknowledge all those not officially con-
cerned witn my thesis who both influenced and raassured me through-
out the last three years., However, I want especially to mention
Danny (Daniel 6. Bocbrow), wno was always there when I needed him,
and Claudia, who was never really away.

it

. %
- — e e —————O Y] NI
[5’((;; 3 ‘ lr ’ % ¥
v My
% Yy ’ W gl DA eee ;.
BT W FTK g 0 IS - ..u'ro.luﬂw-niE"- U oo g 1 o S S ——— e > - -— MM It
.

¥

3

TABLL OF CONTENTS

Chapter Page
ébstract ' i
Acknowledaemeats ii
List of Fijures iv
1 Introduction 1
2 Symbiotic Systems 9
3 The PILOT Eyster 21
4 Facilities in the PILOT System . 45 ¢
5 Experiments with a (luestion-
Answering System 65
6 Experiments with @ Problem Solver 93
7 Improving PILOT | 139
Appendices Page
1 Symbolic Differentiation in LISP 151
2 Using PILOT 153
3 List of Modifications ‘ 179
Bibliography 187
Biographical Note 193
1ii

~ w'w“ﬂ"’fmﬂﬂ"*y@jﬁuﬂﬁi YTy

N o TU———————

P
i

B "V] P A -8 e o - -
P “ . . PO RSP e U SRR 1L = TERTUNR S SE JORL U W [T gy L3 ™ sl
- B “ . JY I A

LIST OF TIGURES

Nunber

1 The function ADVISE

2 HISTORY

3 User-PILOT Interxfaces

4 A Simple Problem Solver

5 Flow Chaert of PILOT

e T O R e el L N LT

36

39

40

95

156

iv

CHAPTCR 1

INTRODUCTION

The goal of artificial intelligence is to construct computer
programs which erhibit the kinds of bshavior that we call 'in-
telligent' when we observe {t in human beings. These programs
are usually so ccmplex that the programmer cannot accurately pre-
dict their behavior. He must run them to see whether any changes
should be made. Developing these programs thus involves a
lengthy trial and error process in which most of the programmer's
effort is epent in making modifications. PILOT is a system de-
signe¢ specifically to facilitate making modifications in pro-
grams, Exauples of actual user-PILOT dialogue are presented.

This thesis is con:zerned with the problem of using computers
more effectively'for solving very hard problems, particularly
problems in artificial intelligence.' These prcbiems are ex-
tremely difficult to chink through in advance, that is, away
from the computer. In some cases, the programmer cannot foresee
the implications of certain decisions he must make in the design
of the program. 1In others, he can Compare several alternatives
only by tryiﬁg them out or the machine. §ince he cannot accur-
ately predict the behavior of his program becarse of itsvsize
and conplexity, he must instead adopt the more pragmatic policy
of: “Let's run it and see what happens." The result is that
solving thege problems involves a lengt 'y trial and error pro-~
cess of "write zome code, run the program, make scme changes;

writ=s scme more code, run the program again, etc.,” even assuiing

* For the definitive paper o1 Aitificial Intelligence, nee
Minsky's “"Steps Toward A-tificial Intelligence®™ in Tesgenbaum
and Feldman (see bibliography.; This l.tter budk & k5 contains
Minsky's bibliography on artificial intclligence as well ae
s~me of the more significant anl intereting papera Of recent
y2ars,

Moar * L e . C e el s Ry e el P T .t

P R L S L e e

ot Vs et

that the programmer does not make any "programming errovs,"
P Yy P

wnich is rarely the case.

Moreover, in artificial intelligence problems, this process
must often be prolonged beyond tne debugging phase. It is im-
portant for the programmer to experiment with the working program,
making alterations ana seeing the effects of the changes., Ornly
in this way can he evaluate it or extend it to cover more gen=-

eral cases.

Unfortunately, it is often not a simple matter to make
changes in programs, especially large and complex ones, As a
result, they fregquently becume "frozen," sometimes even before
they are fully operational. Advances in programming languages
have simplified the task of writing code. Time-sharing systems
make the computer more accessible in the "run the preogranm"
phase., However, neither of these directly attacks this problem

of making changes.

PILOT is a programming systen that 15 designed specifically
for this purpose. It improves and raises the lev:)l of interac-
tion between programmer and computer when he is modifying a
program. It takes over many of the chores of programming-
debuaging~charging, leaving the programmer to concentrate on
conceptual problems. PILOT is not a static system; it can grow
and evolve along with tne programs the user is devéloping. As
a result, it can be tailored to any particular user and any

particular problem. In sum, PILOYT helps the programmer to be

more effective, This in turn enables him to attack and solve

more difficult problems.

PSR

e e 0 et ¥P g it M e

v e T B R T R R . P o}

| | PILCY is written an LZSP‘I'J"JJI and cperates in the

Prbject MAC time-chavring systen. at the Massachusetts Irstitute
112,10 .

of : Technology. !. Th> next pages give some examples of

acLual user-P1LOT dialogue. The user's inputs are jin lower case

anu PILOT's responses in upper case.

In the first example, the user is experimenting with a

sion of thne Douuctive Question Answering System of Fischer

<
~
R

Blbck.'zy In this system, thcere are direct statements, such as
"ak(l,home)” anu "wanc{at(l,airport)),” anu conuitionals, such
as| "smaller (x,y),smaller{y,z)-¥ smaller(x,2).” UVeuuctions are
pe&furmed by substitution and by "detachment,” which is a gen~
er;lizcd modus ponens., Thus given the two uirect statements
'%ﬁa&ler(car,houée)" and "smaller(dog,car),” and the above
conditional, the program can deduce "smaller (dog,house)” by
SQbstiﬁuting dog for x, car fu¢ ,, and house for z.

|

| One difficulty with this scheme is that the deduction cf
even a “true” statement may not terminate because the same con-
ditional may be considered repeaiedly. This cannot be avoided
in general, becausc cf the existence of "undecidable® proposi-
tions; but in many cases it can be circumvented. In this ex-
ample the user is experimenting with different methods to
achieve this,

The most straightforward apprcach would be for the program

t6 keep track of what it was doing., It could then apply some

simple criterion to decide whether or not it was “looping,‘ and
if it was, to abandon the deduction. The danger with this is
tﬁat a particular criter:on might stop a deductisa vhich would

otherwise terminate - or it might not recoynize one that wouvld

" - TR NN Ayt
- i A

b ———

not. But, this is the point of experimenting with a working

program: to try out various ideas.

In our example, SOLUTIONl is the function that handles new
Yquestions.® The user wants to prevent it from entering itself
more than twice recursively, In other words, this is the cri-

terion he is consicering.

(tell solution 1, (before number advice),
1f {countf history ({solutionl -))) is greater than 2, then quit

The user tells PILOT to modify the function SOLUTIONl. The
phrase " (bafore number advice)"” tells PILOT to insert this ad-
vice immediately before the advice containing the key word
*number." (This refers to advice the user has previously given
SOLUTION1l - see Chapter 5 for complete experiment.) The user
wants SOLUTICN]l to cease computation whenever * (countf history
{(solutionl -))) is greater than 2.% COUNTF is a general count-
ing function available in PILOT. 1Its arguments here specify a
search through the current "history” of the computation counting
the numnber of times the function SOLUTION]1 has previously been
entered, The "history"” is provided and kept up to date auto-

matically by PILOT,

TRANSLATION: (EDIT SOLUTIONI BEFORE ((INSERT {ADVICE COND
((GREATERP (COUNTF HISTORY (QUOTE ({SOLUTIONI -))) HISTORY
} 2) (LIS;I
L

(T NIL)) BEFORE NUMBER (BACKTO ADVICE) UPl) STOP)!

This is the translation of the user's request. It has been
interpreted as a call to the function EDIT. EDIT will INSERT

at the correct place the piece of advice that is the translation

e g gt e N w6l WL e Ay A e v Spo o

of "if (countf history ((solutionl --))) is greater than 2,

then quit.”

TRANSLATION: (FLIP
($ NUMBER (BACKTO ADVICE) UP1 §)
(1 2 3 (ADVICE COND
((GREATERP (COUNTF HISTOkY (QUOTE ((SOLUTIONY -)))
HISTORY) 2) (LIST

(7 NIL;; -2 -1))
{SOLUTION1 BEFORE)

. This sezond translation takes place inside of EDIT. (INSERT ...

BEFORE ...) has been transformed into a call to FLIP. FLIP
will insert the advice at the correct point. Actually FLIP
will construct a new list with this advice inserted. EDIT then
replaces:the old advice structure with the new one, and returns

control o PILOT for more requests.

Later, the user considers a more sophisticated criterion for
terminating deductions, For this, he needs a function to deter-
mine whether two gquestions are identical, except for substitu-

tion of variables. He defines a new function, MATCHES.

[
(define matches (x y) as “‘
1f x is null, then y is null,
1f (car x) is equal to (car y) or
(variable car x) and {variable cariy).
then (matches cdr x cdr y)) (’

using PILOT to transl:“e from his own language into LISP.

T N T o T R T O T ¥ TR L

B P

TRANSLATION: {DEFLIST ((MATCHES (LAMBDA (X Y) (COND
(%NULL X) (NULL Y))

(EQUAL (CAR X} (CAR Y))

AN
(VARIABLE CAR x;; '
. VARIABLE 2CAR Y)})) (MATCHES {CDR X) (CDR Y
) (T NIL))))) EXPR)

(MATCHES)

This is the translation of his request. Here instead of calling
EDIT, PILOT calls DEFLIST, which defines MATCHES as a function
{an EXPR) of two variables, X and Y. Note that PILOT, because
it knows how many arguments a function takes, has correctly
parsed (MATCHES CDR X CDR Y) as (MATCHES (CDR X) (CDR VY)),

(VARIABLE CAR X) as (VARIABLE (CAR X)), etc.

One of the claims of PILOT is that it frees the user from having
to consider the inner workings of his system, This is illus~
trated in the above example. Here the user has taken an
unfamiliar system, writhén by a different person, and performed
certain nontrivial modifications. This was done with only a
superficial knowledge of the design and construction of this

system,

However, it is when the user programs within PILOT, taking

into account its capabilities, that the greatest returns are

obtained. He can proceed almost directly from flowchart to
working system, filling in the details using PILOT. Thus it is

no longer necessary to complete the details of planning before

commencing to program. The program can be developed on=~line.

.. P - e " b g o 0 SRR R R,

e T <. . e i
e S e e W R abt

e v-wnﬂ?’w‘)"““"” - "fﬂ'ﬂmw —— N e w

ke . - >

AN ey A e T weg #T N ag e WA AR s s 05 e s o0 F v

This is the case with our secon? example. The user has
programmed a4 simple flowchart. Some of the functions even have
null definitions, that is (LAMBDA NIL NIL)}. The following dia~-
logue shows how he can modify his system to solve a problem new
to it: the cannibal and missionaries problem, (Note that in the
last line, the computer, with the line *T*, announces that it

has, in fact, successfully solved the problem.)

solve (cannibal and missionaries)
(DONT KNOW HOW)

(start with sidel (mmmc ¢ ¢) side2 nil, to side2, from sidel)
START

(tel) goalp, return with sidel is null)
GOALP

(tell moves, return with '{{(movel) (move2))}
MOVES .

(define movel as alltran valueof from '(81) '({2) 1 3))
MOVEL)

{define move2 as alltran valueof from '($1 § $1) '((2 4) 1 3 5))
{MOvVEZ)

(tell make, to (y) (setq y from) and bind (valueo? ' from)

to {cdr move) and bind ?valueof ' to) to (append ca- move valueof to)
and bind from to to and bind to to y)

MAKE

(tell progress, if ' m is a member of sidel and ' m is a
member .of side2 and (countq sidel ' m) is not equal to
(countq sidel ' ¢), then quit)

FROGRESS

(aps : save (cons from side2) on hist)
GPS

(after gps : pop hist)

GPS

{tell progress, if searchf hist (((= from) § / {setequal (= side2)}))
then quit
PROGRESS

soive {cannibal and missionaries)
!!Tt .

TP TN N PP SR A, s el - ST el I ST T L i mes R

S WM BT % e e W

EARES

XY

o m———

P ™

These examples give the flavor of thz interactions between the
user and PILOT. It is rot expected that the details of tha
dialogue will be self-evident. Remember that while there are
many conventions used in communicating with PILOf, they are the

user's conventions, in this case mine, and as such have intui-

tive meaning to me. Learning to use PILOT involves building a
language for communicating certain operations. The above ex-
amples indicate, to some extent, the type of language I have
found useful. If you were using the system, you could, and
undoubtedly would, change the format of some or all of the oper-
ations specified to PILOT in these examples. This in part, is

what makes PILOT symbiotic.

gy T oy £ VB o] bt BRI L O Bt 1 e A+ o

R R S

SRR AU, S R LIS
. S i T

e R R R S s R G PRI AT e T

e, kla i . g | S u»wwmww"‘ WW'“W Beord e

AL,

R

CHAPTER 2

SYMBIOTIC SYSTEMS

Man-computer symbiosis involves very close coupling of man
ana machines. This chapter ilescribes several of the more suce
cessful "symbiotic" programming systems. While ncone of these
perform operations for the man that he could not do himself, they
allow him to operate at a greater level of abstraction, and
thereby to concentrate more fully on the problam he is trying to
solve. This in turn has a substantial effect on his productivity.

Symbiosis is a mode of living characterized by intimate or
constant association or close union of two dissimilar organisms,
The usual implication is that the association is advantageous to
one or both.lls) There are many examples of symbiesis in both
the botanical and zoological worlds,'among these the symbiosis
of algae and funni.(called lichens), ants and anhids, and the

pilot fish and the shark.. But until 1960, the term symbiosis
had only been applied in the biological context.

In 1960, Dr. J.C.R. Licklider introduced the term man-

computer symbiosis in an often-cited paper by that name.lzz)

Concerning the problems involved in developing symbiotic systums
he stated:

" *Among the problems toward which man-computer symbiosis is
aimed -=- problems that men and computers should attack in part-
nership ~- are some of great intellectual depth a. i intrinsic
difficulty. The main problems that must be solved to bring man-
computer symbicgis into being, however, appear not to be of that
kind. They are not easy, but their difficulty seems due more
to iimitations of tehnology than to limitations of intelligence.”
{23) (italics mine)

* the latter symbiosis, that of pilot fish and shark, is part

of the derivation for the name PILOT. The name is also meant to
reflect the fact that this is a pilot system for man-computer
symbiosis.

R B b e WY 6 e muMed g €. S o IR el Ok ST r A eme et R .

L e

it 2

™

Much effort has been devoted to developing symbiotic systen

in the few years since this statement was made. In these systen
% . ‘ : the computer performs the routine work -- a surprisingly large
f | percentage of the total anount =-- that must be done to prepare
for insights ana decisions in technical and scientific thinking.

Man sets the goals, performs the evaluations, and in general,

guides the course of the investigation.

In evaluating these systems, one must realiize that there ar
degrees of symbiosis. You can always improve a system. However
Licklider has set as a subgual the development of "a mechanism
that will couple man to computer as closely as man is now
coupled to man in good rultidisciplinary scientific or engineer-
ing teams." The systems described in the following pagés cer-

tainly achieve this goal.

Sketchpad (48]

1 Mcst computers use keyboards for on-line input and output.
This excludes the use of diagrams for communication with the
machin~., About 1960, an interea: began to build up in developirn
computer display systems whereby man and computer could converse
rapidly through the medium of line drawings. The most signifi-
cant system to arise from this impetus was “Sketéhpad,& the work
of Ivan Sutherland.{46} Using Sketchpad, the user could make
two-dimensional sketches with a light pen directly on a computer
CRT display, and then modify and move parts of the drawing around
as he wished., Sketchpad would preserve the topology of the draw-
ing and cgrry out corputation on the figures so drawn. For
example, in one mcdén, when the user drew a line, the coﬁputer
would draw an absolutely straight line. When the user made two

lines come almost together at a corner, the computer would make

10

W ey g A Y e W e W BN L U UM ¢ e s R s R IR R]

them come exactly together, etc. Furthermore, Skztchved would
remember that the lines were joined so that if t*e opcrator
moved one of the lines, it would move the other one in such a

way as to maintain the intersection at the corner.

In other modes of operation, Sketchpad woula make perfect
arcs, straighten uvp figures so that nearly horizontal lines were
made exactly horizontal and nearly vertical lines were made ex~
actly vertical. It would remember the shape of a figure or sub-
figure so that the user could request replicas of this figure at

_various points of the diagram. Sketchpad thus permitted the user
to make an assembly 6f several elementary figures, to replicate

assembles, to make assemblies of assemblies, etc,

In one impressive demonstraticn, Dr. Sutherland sketched
the girder of a bridge, and indicated the points at which members
were connected together by rivets. He then drew a support at
each end of the girder and a load at its center. The sketch of
the girder then sagged under the load, and a number appeared on
each member indicating the amount of tension or compression to

which the member was being subjected.

Sketchpad has been extended to three dimensions oy

(¢} In Sketchpad III, the user can ada a lire to a

Johnson,
plan and have it appear simultaneously in the front field, the
side view, and the oblique representation. When he rotates the
oblique representation, the orthogonal views change appropri-

ately, etc.

Sketchpad is primarily a research system; no one today is using

Sketchpad. However, the insights gained during its development,

11

* o T " 1 e s

e Lo o e m——

MR T e FRGMAIT ML s e R i e, 4, Sl 2B Wl SN e T L 0 mdaas | AT T L L I TR TR N e

-

and the psychological jmract of the progqram itself nave greatly
influenced the const: uction of symbjotic systems, especially

those involving graphical input and output.

Computer-Aided Circuit Design

Another graphical research program involves the on-line ¢on-

(41 An electronic circuit

struction of electrical networks.
designer interacts directly with the computer through a type-
writer and CRT graphical input-output equipment. He builds his
circuit by keying in an element at a time to the computer, plac~
ing the light pen on the CRT to show where it goes. In this way,
he can compose on the screen any circuit he wishes; then he can

1
ask the computer tu analyze it.

The most significant consequence of this man-machine intery ;
action, as with the other systems described, ls the short time,!
usually on the order of seconds, between a user request and the
computer response, Lindgxrem(zsl states: "the 59.99 percent of
engineers who are designing circuits without on-line graphical-

language facilities, are, in one sense, already 'living in the

past.'"

One of the most obvious areas in constructing symbiotic
systems'is mathematics, since mathematical tasks are usually |
better defined than those in other fields. Many "mathematical LL
l laboratories” have been developed to provide the mathematical
‘ scientist with the services of an on-line computer. Some of

these are described below.

12

13
4

' ’ e st ipnn W L, ey [

1 g Wb b ST L AR T3 B A RS U5 i o o Mty bl A

The Symbolic Mathematical Laboratorglzgl

One of the problems a user performing any secliscic nathe-
matical computations soon encounters is the inadequacy ol the
keyboard for communication with the machine. Consider the follow=-

ing expression:

_201 logw 2edew L
Ro{w)* T * 3T * 7elloga) of 8,(t)eM,_ (wet)at

For writing such expressions, the mathematician employs a large
character set, and utilizes subscripts and superscripts extremely
liberally. He observes certain conventions concerning the phys-
ical size, grouping, and placement of subexpressions. All of
these make it easier for him to reau and comprehend mathematical
formulae. Even if a keyboard could be designed to handle ex-
pressions of the above type, it would have to be unreasonably
layge and complex. 1In addition, how are subexpressions to be
referred to? The mcthemetician can point to them or in other
ways refer to them directly, when he is working on paper or
blackboard. Requiring him to input a subexpression each time
that he wishes to refer to it would make for a very unsatisfact-
ory system,

28,25,37!}
The Symbolic Mathematical Laboratory[e is a system

designed to solve these problems. In the originai proposaln‘]l
Minsky describes a program "for displaying publication-quality
mathematical expressions given symbolic (list-structure) repre-
sentations of the expressions.®” The goal is to produce

"portraits™ of expressions that are sufficiently close to con-

ventional typographical conventions that mathema:icians will be

able to work with them without much effort -- so that they do

13

o e

PR R e Y o

not have to learn ..uh in the way cof a new language, so far as

the representation of mathematical formulae is concerned."(37]

"We imagine that the user is engaged in performing a math-
ematical expioration, For example, he might be trying to find
a solution to a Jifferential equation. At the moment, he has
displayed on the screcn cne ur two eguaticns, and he nas in his
head the name of several! other expressions or partial results
already studied and filed away. He decides to perform one action,
e.g., substituting a displayed eguation, solving it for some
variable, expanding some subexpression in a certain way, or
perhaps simply displaying something else., This action is re-
quested by some combination of light-pen and keyboard signals.
These signals are encoded and transmitted to LISP, which com-
putes or retrieves the requived new expressions and transmits
them back to the display system. The latter then compiles and
displays the desired new picture.™!

The basic ingredient of this system is the program sequence
that converts an internal mathematical éxp;ession into a conven~
tional printed representation. Martin uses a Polish prefix
notation convenient for LISP operations to represent expressions
internally. For example, (PRD {(PRD 2 *L {PWR PI -1 NIL) NIL)
(PRD {LOG OMLGA NIL) (PWR (PLS *A 1 NIL) -1 NIL) NIL) NIL) is
the intcrnal representation of j%!,_%%{g .' Since the corres-
pondence betwcen intcrnal representations and wnat is being dis-
played is mairtaincd by the program, the user can refer to any
particular subcxpression, by pointing at it, and the program

selects and operates upon the corresponding internal structure.

The converse problem of converting the external printed
representation to internal representation has not bcen.treated
as extensively in Martin's program, although he intends to add
a charocter recogrition scheme based on ARGUS!47' for direct

input from the CRT. However, it is not as serious as the display

* The Ry (w) expression on the previous page is an actual examﬁle.
Sew [28? for a photograph of this expression as it appears in
his system, .

14

Pt oo W

-

9

prcbler, because it is not done as often -- siiace most ¢’ cthe ex-
p.essions used by the mathematician will either be genercted by
the program or be subexpressions of expressions already in tne
system,., Therafore, the user can tolerate entering expressinng

by some tedious, more conventicnal keyboard method, espevially
since he can see the displayed expression as it goes in and
correct the computer if it, or he, has made any mistakes.

'

Other Mathcmatical Systems

D;’Maurer has designed a system for a more sophisticated
mathematician, specificaliy the algebraist.lJOI His program is
conversant in such subjects as groups, subgroups, ideals, etc.,
and can respond to requests of the form: generate the set of all
normal subgroups of a particular group; generate subsemigroup z
from element x of y; etc. Maurer has preprogrammed many of the
operations needed by the algebraist, and has included facilities
for introducing new ones as needed. However, the system has
not yet been put to practical use.

MATHLABlljlis a LISP program whichvemphasizes continually
increasing powers. MATHLAB can formally integrate certain
functionsg, differentiate, factor, expand, simplify, etc. Since
it is written in LISP, new operations can be added very easily.

MATHLAB is currently operating on the Project MAC time-sharing

system,

CALCULAID and MAP are two more systems for using the com-
[50)

" puter as a mathematician's helper. CALCULAID is oriented

towar.s writing programs to solve large problems with much data.
1t has built in FIT and REGRESSICN operators, and a conveniint

way of specifying matrix operations. MAPlzl’ has facilities for

15

~ W»ﬁ.’:zuﬂ*w T

e ety

performing convolutions, Fourier transforms, and other more
sophisticated analytical operations. 1In MAP the user is en-
couraged to consider himself as conversing with the computer,
which then performs the operations. This is in contrast to
CALCULAID, where the system is not viewed as an agent so much

as a collection of useful subroutines, easily available.

”
MUSIC Laboratory

Perhaps at the other end of a spectrum is an attempt to
create ¢n environment, on the computer, which is conducive to
the composition aud analysis of music. Using the computer as an
expensive instruuent is not a new idea. 1In 1961, Peter Samson
wrote & music comptler for the Digital Equipment Corporation
PDP-1 computer.lq3] The basic idea was that the user would en-
code the musical score inty a series of numbers, each note being
denoted by two numbers ~ one for its pitch, the other for its
duration., The computer would then play the music, utilizing its
digital-analog converter to control the vbltage on a speaker
directly. Thus the computer would play a middle C b& varying
the voliage 256 times a second, essentially building its own
square wave. The computer was even fast enough to construct in
real time the wave form corresponding to a three part harmony.
However, the MUSIC Laboratory project currently underway at

M.1.T. has even more ambitious goals.

The standard teletype of the DEC PDé-G has been augmented
by an 88 key pian. keyboard which is connected airectly to the
computer. Thus the user can play a melody, hear what it sounds
like - as performed by the PDP-6 - and also see the score dis-

played visually on the scope. He can then edit the score, using

* No documentation is available.

16

the light pen, the teletype, or the piano keyboard, and hear it
played again. Programs are being written to allow the user to
request the computer to fill in a harmony to a particular

melody, or to construct variations on a theme and to play them

back to the user.

Eynergetic Systems

The most important point about the systems described above,
a point which also applies to PILOT, is not so much that they
are symbiotic, i.e., cooperative, as that they are synergetic.
Synergism is the cooperative action of discrete agencies such

that the total effect is greater than the sum of the two effects

taken independently. An example of this is the action of peni-

cillin and streptomycin when taken together. The extreme potency
of the combination of tranquilizers and alcohol presents another,

more familiar example. .

The most significant aspect of the systems described above
is the synergetic action of man and machine that they foster.
Close examination of these programs reveal that they do not, in
themselves, do anytiiing remarkable, nor do they represent any
significant advance in sophistication. Computer programs that
analyze circuits or invert matrices in the course of solving a
problem are not uncommon. ‘However, there is a substantial
effect on the productivity of a man if he can immediately sub-
stitute an expression for a variable and integrate. The mere
fact that he could have performed each individual coperaticn him-
self is not important, nor does it affect the synergetic gquality
of the interaction., What is impcrtant is that the overhead in-
volved in switching tasks is eliminated, or at least substan-

tially reduced. Thus the user can operate at a greater level of

17

L tem Cu L——————

e N i R 5 T e e g e g e

_______—_’

e

abstraction and thereby concentrate more fully on the problem

itself,

This came phenomenon occurs with the so-called higher level
programming languages. These languages do nét do anything for
the programmer that he could not do himself. In other wordé,
you could program everything in méchine language directly. How-
ever, the fact of the matter is that suitable programming lang-
uagés 'o allow the programmer to attack and solve much more diffi-
cult problems. As an example, ten yéars ago an M.I,T. gradua*te
‘student in electrical engin-ering received a master's degrce with
S chesis (program) for performing symbolic differentiation. This
same feat can be duplicated today in a half dozen lines of LISP

*
coding. The point is not that LISP makes it easier to solve

problems, but that thereby LISP makes it possible to solve harder

Broﬁlems. In this particular example, the amount df effort re-
quired to construct a differentiation routine in LISP was com-~
parable to that required for a small subroutine. This is where
the synergetic effect eaters because now the programmer can
build systems in which this difrferentiation routine is precisely
that: just a small subroutine (as it is in the systems of Martin

and Engelman).

The question here is one of human limitations. Once the
programmer has constructed and doebugged a differentiation routine,
it should not matter whether it was written in six lines of LISP
or five thousand machine instructions. 1In practice, however,
there is a lim.t to the size and complexity of i system that oae
person can successfully construct. assuming that he is starting

from scratch., Unfortunately, with artificial intelligence pro-

* See Appendix 1.

18

- . BRI e i " e % L e AR R W S

T R,

grams, this limit is frequently encounterea while there are

still ideas remaining to be tried.

The PILOT system represents an exercise in applied synergism
that parallels and complements that of high level programming
languages. We might draw the analogy that PILOT is to an edit-
ing program what high level programming languages are to machine
code. PILOT does not do arnything for the user in the way of
making changes that he could not do himself by editing or re-
writing., But the fact that PJLOT does do it means that the user
dues not have to. As with the systems described earlier, he is
free to operate at a much higher level of abstracticn and un-
encumbernd by bookkeeping. He thus finds himself able to solve
problems he could not even consider before. This is what makes

user~PILOT a synergetic system.

19

T O R T e e X e e — S e -

o __—_

-

-

CHAPTER 3

THE PILOT SYSTEM

The functios of PILOT is to allow the programmer to treat
his program as if it were a block diagram, This places certain
requirements on PILOT in terms of the structure of programs, data
in programs, and modifying programs. This chapter presents a
model of programs and programming that emphasizes how a program
lpoks to its avthor. The basic builaing blocks of programs in
the model are Erocedures, and the operation of advising consists
of modifying the interfaces between these procedures. Imple-
mentation of a system that permits advising is described within
the LISP programming system. Viewins the entire system of user-
PILOT~programs as one program, it is possible to modify the
interface between the user and PILOT to permit more flexible
interaction, as well as modifying the interface between PILOT
and the user's program to allow meore complex types of advice to
be specified.

One:of the most'useful ways of describing and r;presentinq
a computer program is the block diagram. 1In it, the individual
processes that take place inside the program are clearly isolated.
Furthermore, it permits either elaboration of the details of some
part of the computation,‘or bypassing details (by merely drawing
a small rectangle and labeling it PROCESS). It is valuable in
planning a program, because it makes it easy to scec the flow of
control and the interactions between varjous parts of the program.
Moreover, a program in this represgntation can easily be modified,
e.g., move blocks from one point to another, change lineg of

communication, aad new blocks, replace old blocks, etc.
Unfortunately, computer programs tend to lose the nice

features of block diagrams once they are written as a scquence

of instructions.

21

R S i L R e L e R e o G e e g %7

R

e e]

The function of PILOT is to allow the programmer to continut
to treat his program as if it were a block diagram, This places’
certain requirements on PILOT in terms of the structure of pro-
grams, data in programs, and modifying programs. These are

discussed below.

Structure of Programs

One of the principal advantages of block diagram representa-
tions is their flexibility. They do not require him to be con-
sistént abcut the amount of detail from ciagram to diagram, If
it seems appropriate to the prcgrammer to describe a certain
section of his program in great detail, while only sketching
briefly some other portion -- for whatever reason he may have «-
he can easily do this. Furthermore, he can represent the same
program in different ways at different times; he is not compelled

to make one choice and be bound by it.

I1f this flexibility is to beicaptured in PILOT, the system
cannot restrict the user to some ﬁérrow range of precohceived
structures., With respect to desc%{bing and representing programs,
PILOT should erakle the user to maHntain a wide range of choice,
Regardless of objective criteria f%r choosing one representation
over another, the user must be allgweﬂ tn chcose whatever
structure seems the most convenient or dcsirable to him. 1In

other words, he must be allowed to make a siubjective choice.

Subroutines
The standarcd way of structuring a program (as opposed to a
block diagram) is by meang of the subroutine. Programmers use

subroutines to make thejr programs look morev like their block

22

{

|

|
T —— ey o e <N S P A R AWGVB’WTW :3: 7“’@%’%%%'%‘%11 Rt
i ‘ ‘

diagram representation.' This makes constructing and debugging

a program much easier. Subroutines in a program are the analogue
of the blocks in the block diagram, and, to a certain extent,
their use retains many of the advantages of the block diagram.
For example, to move a subroutine from one place to another in
the program, all that is necessary is to move the call to the
subroutine - usually only one or two instructions. To inﬁort a
subroutine, all that is necessary is to insert a call (aséuﬁing,

of course, that the subroutine has been written). In the same

way that blocks can be treated as separate entities, it is often

possible to treat subroutines as separate from the rest of the
program, and to construct and modify them accordingly. Thus, at
least to the level of the subroutine, programs can be treated

as block diagrams.

However, below this level, rigor mortis sets in. Theﬁindi~
vidual blocks correspond to the way the programmer partitions

the task, and the subroutines correspond to these blocks. But

he may change his mind. What was viewed as & single oper?tion
iritially may at some later point best be considered as three or
four distinct operations. Remedying this in the block diagram

is simple: replace the block by several smaller blocks. However,
breaking a subroutine into three or four smaller sections is
often not that easy. And yet frequently the programmer must be

able to deal with units smaller than the subroutine.

i

\

\

. |

Procedures |
The "atomic" unit of structure in my model of programming

will be the procedurz, not the subroutine. A procedure is

* Other considerations such as computation time, and program
space also affect the use of subroutines,

23

et vt A Y

R A T T g AT L o PG T T O e S e 7
&% . :

defined as a collection of n entrances and m exits together with

input-output characteristics. This definition purposely does not

require a procedure to be any easily isolatedvpart of the program.
1f, of course, a procedure is a subroutgne, identifying it is
simplified. However, a procedure may be a part of a subroutine,
or even parts of seve;al subroutines, Essentially, a procedure
is a chunk of code that ihe programmer wants to treat as a single

unit. PILOT enables him to do so.

Data in Programs

Procedures are defined in terms of what they do, that is in
terms of transformations on certain variables, These variables

are called essential variebles. Essential variables are not the

only variables that are altered by a procedura. For example, in

a time-sharing environment, the state of certain disc and drum
variables (registers) may change thousands of times while execut- .
ing a program. Even if we consider only variables specifically
utilized in or changed by the operation of a program, many of these¢
will be low-level, or local variables, and thus not important to
the programmer. Describing the state of the computer at ény time
during a computétion in terms of essential variables is more in

keeping with the block diagram,

Essential variables are similar to the arguments of a sub-
routine. However, in many subroutines the essential variables'are
not passed through thg calling sequence. Furthernore, procedures
need not be subroutines, nor have a specific call. Thﬁs the data
used by the procedure may be scattered throughout the program.
However, it must be available to the procedure. Some information i
not available to a procedure. or eXample, the only variables that

may be referenced insiage of a FORTRAN subroutine, besides the

arguments to the subroutine, are those specifically declared to

24

T g < TR

be COMMON. Some information may not be availsble to the progruam
at all., For example, information regarding the function that
originated the call to a particular FORTRAN subroutine is not,
in general, available anywhere within the program. (Of course,
the programmer can specifically provide this information by
including the name of the function as one of the inputg to the

subroutine in question.)

Variables that are available but non-essential are called
extraneous. In many programming languages, there can be no
extraneous varliables -= everything is either menticned or else
not available.. (At the level of machine lancuage, of course,
everything is available.) This immediately precludes the compu=-

tation of the name of a variaktle, i.e., indirect reference to it.

Extraneous variables are important because they may at some
time bezome essential to some procedure, as a result of pregram
modificarion. If they are not available, they cannot be used.
PILOT autoumatically makes available information regarding what
is hapéening "abcve," i.e,, what functions have been called,
what their essential variables are, etc., so that the programmer
does not have to foresee explicitly what information he will

need in a particular procedure.

Modifying a Program

There are two ways a user can modify programs in this sub-

jective model of programming: he can modify the interface between

* There are exceptions, In LISP 1.5, uncompiled functions have
their arguments bound on the ALIST so that in any particular
function, all of the essential! variables of funfga?ns entered
previously are available. Similarly, in COMIT, the 127 shelves
are available, but often are extraneous variables. But, by and
large, the above statement is true,

25

T R Y S Gy T DR 0 TS B Mt Ot o ofe gty =

41-------II--lIIIll-llIIIIllIIIIlllIIllllllIllllIlIIIIIlIIllllllllllllllllllllll.

™

procedures, or he can modify the procedure itself. (Since pro-
cedures are themselves mace up of procedures, modifying a pro-
cedure at one level may correspond to mouifying the interface
between procedures at a lower level,). Modifying the interface
between procequres is called advising. Modifying a procedure

itself 1s editing.

Advising is the basic innovation in the model, and in the
FILOT system. Advising consists of inserting new procedures at
any or all of the entry or exit points to a particular procedure
(or class of procedures). The procedures inserted are called
"advice procedures" or simply "advice." Since each piece of
advice is itself a procedure, it has its own entries and exits.
In particular, this means that the executicn of advice can cause
the procedure that it modifies to be bypassed completely, e.q.,
by specifying as an exit from the advice one of the exits from
the original procedure; or the advice may change essential vari-
ables and continue with the computation so that the original
procedure is executed, but with modified variables. Finally,
the advice may not alter the execution or affect the original
procedure at all, e.g., it may merely perform some additional
computation such as printing a message or recording history.
Since advice can be conditional, the decision as to what is to
be done can depend on the results of the computatior up to trat

peint.

The principal advantage of advising is that the user need
not be concerned about the details of the actual changes in his
program, nor the internal representation of advice, He can
treat the procedure to be advised as a unit, a single block,

and make changes to it withou concern for the particulars of

F1)

e P S T VT T e R R T

this block. This may be contrasted with editing in which the
programmer must be cognizant of the internal structure of the

procedure,

Tn the PILOT system, both of these facilities are available,
Considerable effort has been devoted to providing the user with
a sophisticateu editor, with expandable syntax and semantics, in
order to match the flexibility of the advice-giving mechanism.
The editor allows the user to specify structural changes con-
veniently, while the advisor handles intcrface modifications.

The advisor is usually more convenient, since it handles more of
the details. 'However, the user may wish to perform what could
be an interface modification by éditing the procedure itself,
possibly becausz of efficiency. 1In fact, for certain types of

operations, the advisor itself uses the editor.

It is clear that both advising and editing complement each
other, and that both are needed to ensure the programmer frecdom
to treat his program in ways that seem desirable to him., The
choice of which of the two facilities he wishes to use for a
particular operation is a matter of his personal preference, and

depends on the nature of the change.

Class Modifications

It is most important that the user be ablé to modify a class
of procedures, as well as individual procedures, i.e., to :éfer
to procedures associatively as well as pominally. Until now we
have assumcd that the procedure to be modified had alreauy been
identified and located, but this is not necessarily the case.

For example, the user may wish to spucify changes to a class of

procedures in which certain members have not yet been uefined.

27

O P

Te A r—
S i

4

Alternatively, the decision of whether or not a modification
' applies to a parﬁicular procedure may have to be vostponed until
the procedure itself is actually entered. 1In the former case,
it wili be necessary to monitor the definition of new procedures
in order to make the appropriate modifiqations. In the latter
case, it may even be necessary to require all procedures (or a
sﬁfficiently iarge class of procedures) to inquire at the time
they are called whether or not there are any modifications that
shouid affect them. In'both cases, it is not possible to locate

procedures that are to be modified at the time the user specifies

the modification.

Imglementaﬁigg ,

It is clear that ihplementing PILOT will be greétly facil-
itated by an appropriate choice of programmzng language. We
must avoid translators, assemblers, and compxlers that assume
thur the programming will be completed before the translation‘
is begun, and that the program will not actually be run until
all the assembling and compiling has been finished. In languages
of this type, FORTRAN, COMIT, MAD, etc., it is difficult to
write programs that construct or modify procedures because the
communicgtion between procedures is so deeply embedded in the
machine instruction coding, that it is very difficult to locate

entrances, exits, essential variables, etc.

The language 1 have chosen to use js LISP 1, 5. 132,33,1]
The LISP formalism is Convenient for programming recursive tasks,
which makes it good for problem solving and other heuristic pro-
grams. It is a list processing language, whlch is a necessity
for pPrograms of this typec because storage allocation requirements

cannot be predicted pPrior to run time, as the size and structure

28

of the data are determined by the computation, LISP is well
suited to symbol manipulation, which means that it is possible

to talk about the names of variables, and perform computations

’ which produce them. Finally, I chose LISP, over IPL or SLIP

for example, which also possess several of the attributes above,
because I am familiar with LISP and find it convenient to pro-

gram in the functional notation it provides..

In LISP, all data are in the form of symbolic expressions,
or S-expressions. S-expressions are of indefinite length and
have albranchinq tfee structure in which subexpressions can te
readily isolated., LISP computations are also written in the
form of S-expressions. This makes LISP especially adaptable
for our purposes. Like machine languages, ancd unlike most other
higher level languages, one Can writc prodgrams in LISP which
will generate programs for further execution. [urthermore, it
is possiblevto execute data as programs, and conversely treat

programs as data.

This suggests an-easy -way of implementing advising: define
a LISP function, ADVISE, which treats as data the advice to a
procedure and the procedure itself, and executes the procedure
with the appropriate modifications. By giving a name to each
procedure that is advised, we create a canonical place where
information ascociated with the procedure can be stored: itse
property list. The definition of the procedure, and the advice
associated with it can be stored on and retrieved from its prop-
erty list by the function ADVISE. Thus ADVISE requires only
the name of the procedure, and the name of the entry or exit of
the procedure, The operation of advising a procedure is there-

fore reduced to locating its entry and exit points,’ and replacing

29

e R T S Py I T IR I SR e s Ry
A4 *

PR

wr

S prra— vy

Y

B SN

RN

e

them with a call to ALVISE, specifying the name of the procedure,
the name of the entry or exit. The advice is stored on the prop{
erty list of the name of the procedure, and the corresponding

modifications are ahtomaiically éerformed when ADVISE is called. .

The actual definition of the function ADVISE is not this
general. The current implementation imposes the restriétion that
only one entry and exit may be allowed. - This is because the (
effect of multiple entries and exits can be achieved within the
current implementation,'and because it is questionable whether

the greater generality would justify the extra effort.

L
Multiple Entries and Exits in LISP

The notation of LISP is function oriented. It encourages
the user to define different functions for different tasks,
especially because LISP makes it easy to call functions, and to

nest sequences of function calls. Each function call in LISP

- has a single, canonical entry and exit.'namely that provided by

the LISP irnterpreter or compiler. The user normaily aoes not
concern himself with entries and exits; instead he thinks in
terms of inputs (arguments) and outputs (values). The only ex-

ception to this occurs within the special form "PROG."

The PROG feature in LISP allows one to write ALGOL-like

programs containing a sequence of LISP statements to be executed.‘”

* This discussion presumes some familiarity with the LISP
notation. .

30

el e KL A O A S R

iThis is a concession to the fact that certain tasks are easier

*
. when not expressed in functional notation.

} In a PROG, the programmer can explicitly control the flow
%of computation by using labels apd GO statements. For example,
;the function LENGTH defined without ﬁsing a PROG is:

(LAMBDA (X) (LENGTH1 X 0))
_where LENGTHL is defined as:

i

(LAMBDA (X Y) (COND
} ((NULL X} Y)
,‘ (T (LENGTHL (COR X} (ADDL ¥)))))
?Here using a PROG results in a more natural definition:
{LAMBDA (X) (PROG (U V)
{SETQ V 0)
(SETQ U X)
A (COND ((NULL U) (RETURN V)})
(SETQ U (CDR U))
(SETQ V (ADD1 V))

(GO a)))

It is only inside a PROG that the LISP programmer can effect
'multiple entries ard exits, namely by entering or leaving a pro-
fcedure, i.e., a collection of LISP statements, at different labils.
ﬁnultiple entries and exits from LISP functions are simulated by
;transmitting extra iﬁformation in the calling sequence or value

;ot the function, For example, in machine language programming

:# PROGS are also usea because they produce more efficient compu-
“tations when compilea then the corresponding recursive definitions.,
This occurs because it is not necessary to rebind all of the argu-
ments of the function ¢n the push-down list for each iteration

~of the process. For this reason, experienced LISP programmers
occasionally use PROGS even when a recursive definition would be
more natural and intuitive,

31

I RS SR TR NG T RTINS DG L Tt s s et s s) R e 2]
] i .

 wre L

it is thén common practice to write the trigonometric functions
asﬁonejsubroutine with different entrances. This could be done
_in LIS# by defining TRIG as a fﬁnctioh of two va}iables, X and Y,
whe?é/x was either SIN, COS, TAN, etc., and have the approypriate
routinq‘pertormcd inside TRIG. Since it is s0 easy to transmit
iéxtta information in LISP, this is usually the way it is done,

esﬁecially since there is an advantage in having separate oper-

/' ‘ations, or procedurcs, correspond to separate functions: many

facilities such as TRACE, BREAK, COMPILE, are oriented around

functions.

Implementing an'advisiné algorithm in which multiple entries

“and exits were possible would involve placing traps at each

entry and exit and calling the function ADVISE at that point,
This could be done, because one can only "GO" to a labelled

statement, and PROG labels are easily distinguishable from LISP

" forms that are to be executed. This has not been done because

> *
it has not, as yet, been needed.

ADVISE
ADVISE, as currently implemented, is desigﬁed to modify

the interface of a procedure which has only one entry and one

exit, ADVISE has four arguments: the name of the procedure,

" the names of its arguments, the values of its arguments, and the

* There would be some slight complications because of the par-
ticular implementation of LISP at Project MAC, where PILOT is
now operating. “GO" statements cannot be used when the label

“is not local. Thus if we inserted a call to ADVISE at each label,

and then, inside of ADVISE, wished to execute (GO label), we
could not do so. The alternative would be to build our own
version of the LISP interpreter inside of the ADVISE function.
This would be cumbersome and inefficient.

32

S-expression uefinitioﬁ of the procedure. ADVISE records on the
HISTORY list that this procedure has been entered with certain
arguments, and retrieves the advice associated with entry to this
procedure unuer the property BEFORE on the property list of the
name of the procedure. (We can think of the procedure as having

a canonical entry point labelled BEFORE.)

If a LI1SP form appears under the property BEFOEE, instead
of a list of advice, ADVISE treats it as a function of one vari-
able and applies it to the single argument HISTGRY.' The value
of this cc.aputation is then used as the advice associaged with
the entry to tne érocedure. 1:. .his way, the user can achieve
the effect of a mulgiple entry, i.e., different advice can be

used for different entering conditions.

Each piece of advice is a LISP computation. ' ADVISE evaluates
in turn each individual piecce of advice, making available all
information that is available to the oriqinai procedure. The
evaluation of aavice may cause these variables to be modified,
or even create new, availadle variables by modifying the HISTORY
list., (Communicetion between pieces of advice can be achieved
this way.) When all of the advice has been evaluated, the'pro-
cedure itself is exccuted, and its value is slored on the vari-

able VALUE and put on the HISTORY list.

ADVISE then gets the adv.—e assorviated with the exit from
the procedure from the property AFFER, and operates in a manner
similar to that with DBEFORE. When all of the AFTER advice has

been evaluated, ADVISE restores the HISTORY list and returns as

* HISTORY contains information relevant to the computation. It
is described. below on page 338,

33

4 p———— Y

the value of the procedure the value of the variable VALUE (whith ﬂ'

may have been changed during the execution of the AFTER advice)

This discussion presumes that the value of each piece of

advice in NIL. The user can affect the flow of control - from

advice to procedure to advice -~ by returning a non-NIL value fr
a plece of advice. 1If the value is a list, the first element of
this list is taken as the value jof the procedure, and the rest

of the advice is ignored. If t h?'happens BEFORE the procedure

is entered, ADVISE binds the first element of the list to VALUE
on the HISTORY list, gets the AFTER advice, and proceeds from‘

there. 1If it hhppens AFTER evaluating the procedure, the first

element of the list .is taken és the value of the procedure and
‘returned immediately. 1n ibis way;vthe user can indicate that
the étiqinal procedure is to be bypassed entirely.

I1f the value of a piece of gﬁyice is an atom other than ﬁIL;
it is interpreted by ADVISE as a GO instruction. ADVISE treats
the value as a label, and searches for the label in the list of

|
!
|
|
|
l

advice, and continues with the evaluation of advice from that
{ .

point. For example, the user cad,?bandon evaluation of advice

without bypassing the original prbcedure by returning BOTTOM as
interpreted specially by ADVISE.)

i

!

. i
the value of a piece of BEFORE advice. (TOP and BOTTOM are 1abe1§
Since ADVICE is a variable made available by ADVISE, the 1

i

execution of any piece of advice can also modify the advice list.

For example, thLe advice (PROG2 (SETQ ADVICE NIL) NIL) will produce

the same effect as the advice (QUOTE BOTTOM), i.e., cause the

rest of the advice to be ignored., Similarly the user could in-

terpret GO instructions himself by searching for labels and

|

N

|

34 :

e ST e T

modifying ADVICE accordingly.

With the discussion of one more feature, the description of

the operation of ADVISE will be complete. This is the provision

for modifying classes of procedures. This is done by referring

to the property|list of the atom ALL, under the properties BEFORE

-and AFTER as discussed above, before getting the advice specific

to this procedure. Since arbitrary LISP functions can appear on

these properties, it is clear that one can specify advice for any

recursive set of functions. For examplé, to determine whether

-or not the procedure in question has called itself more than

twice, one need merely search the HISTORY list,

|

!

|

The flow chart in fig., 1 illustrates the operation of

ADVISE,

Advising |

| .
Advising a}function consists of storing a piece of advice

on the propercyilist of the function under the appropriate prop~

erty. 1f this #s the first time the function has been advised,

it is also necessary to replace the function wefinition with a
C

call to ADVISE.! Both of these operations may be performed by

calling the fun%tion provided for this purpose: SYSTEMI.

i
SYSTEM1 is a function of three arguments: NAME, the

|
!

the function to be advised, ADVICE, the piece of advice,

WHERE, the plac? (property) it is to be stored, E£YSTEM1
ADVICE to the list of advice (if any) that appears under

property WHERE. 1If this is the first time NAME has been

name of
and
appends
the

advised =

as indicated by the fact that the property ADVISED does not

I .
appear on NAME'$ property - SYSTEM] also replaces the definition

i
!
i
i

35

’:"25"vaﬁﬁgﬂymkaﬂﬁ!f’“'”"ﬂm'?".”?a&ﬂﬂ&&ﬂﬂﬂ”ﬂiﬁ;Hﬁﬂ!&ﬁiﬁ‘r?“tl-urnnggmqov~muunqmarw~-7.,mn L

'

IsiAQy

INTYA N¥NLTY
AHOLISIH 1353y

I0IAQY 1X3IN
3ivnIvAl

138 goN

3314y Vv
Wo¥4 312IAQY

EGELLTE
——

A¥OL1SIH NO
INIVA
15015

e1 994

3¥n032034d
3inJ3x3

330338
WO¥J 321A0Y
IAII¥13Y

S3A

36

WOd¥4 3121 AQY

330438 Ny
ELELTEL]

of NAME by a call to ADVISE. If NAME is not compiled, SYSTEM1
can get the names of its arguments from its wefinition (which is
. also on it3 property list)., If NAME is compiled, SYSTEM1 re-
quests the names of its arguments from the user. SYSTEM1 then
redefines NAME, but saves its old definition as the definition
of a new function, whose name is placed under the property
REALNAME. SYSTEMl also puts the property ADVISED with value *T*
on NAME's property list to indicate that NAME is ready for

advising.

Thus if FOO has the uefinition (LAMBDA (X Y) a)}, and the
user calls SYSTEM1 with NAME = FOQ, ADVICE = ﬁ, WHERE = BEFORE,
the property list of FOO after SYSTEM1 has been executed is:

EXPR (LAMBOLA (X Y) (ADVISE (QUOTE FOO) a (QUOTE (£ Y))

{LIST X Y)))

BEFORE S8

ADVISED *T+

REALNAME OLDFQOO
and the.property list of OLDFOO:

EXPR (LAMBRDA (X ¥Y) a)

|

|
|
|
J

If the user wishes to perform other operation
for example, placing the advice at the beginning o

list under WHERE, instead of appending it at the ena, it is a

with advice,

the advice

simple matter to define a function to do this., (In PILOT, the
function SYSTEM3 performs this task.) Similarly, by calling

EDIT he can specify arbitrary manipulations of advice.
No provision is made specifically for advising procedures

that are not LISP functions, even when they satisfy the one

ent:y, one exit requirement, Whereas the definition of a function

37

can always be found on its property list, locating an arbitrary .
procedure must be done by prescribing both the name of the ‘
function in which it appears and some inpdication of where in its
definition it is. However, it is easy to write a function which
uses the editor to locate an arkitrary procedure inside a functior
and.replace the procedure with a call t§ ADVISE, A similar
function already exists for locatind and defining as a new functic
an arbitrary piece of advice, so that one may.subsequently pre~
scribe advice on it. This is described under the NAME feature

in appendix 2 (page 174},

HISTORY
The HISTORY list is a globally availabhle variable which
conéains information regarding computation in progress. HISTORY
ie maintained by the function ADVISE and consequently only |
functions that have been advised will have thcif passage recorded
on it. The presence of HISTORY means that user vwrograms, rr user
advice (which is really the same thing), can “look back"‘and see
"what is happening above.® This is valuable for avoiding looping,

and in making decisions about alleocation of resources.

HISTORY has the form of an Alist; that 1~, it is a list of
dotted pairs which represent variable bindings. Thus, it can
be used to evaluate a variable, or it can be searched dirvectly

by the user's program.

The individual function calls are clearly segmented on
HISTORY. This is done by having each call prefaced by an appear=-
ance 6f a special variuble named *FN*, followed by a binding
for the name of the function. After the name of the function,

the arguments of the function are strung out, eventually followed

38

L Amen .

by the next bindiuy for the variable *FN*, Thus, the segment of
HISTORY corresponding to the function FOO, with arguments X and Y,

looks like:
(vevee (*EN* . 2) (FOO . 7) (X . 2) (Y . 2) (*FN*.. 2))

In'this'segment, the value of *FN* is a pointer to the next
entry on the HISTORY list, i.e., the list beginning with (FOO . 2).
The value nof FOO itself is a dotted pair consisting of a pointer
to the next _entry on the HISTORY list, i.e., (X . ?) ..., and a
pdinter to the next (eariier) function call, i.e., (*FN* ., 2).

The value of X and Y are, of course, whacever their value is,

The structure of the FOO segment of the HISTORY list thus

-looks like:

]

k4

bt Fo0| | x[AW (v [B | e

FIG.2 STRUCTURE OF HISTORY

Because of this structure, cne can immediately locate the

function called just before FOO - by evaluating (CAADDR FCO).
. §imilarly, oune can locate the last call to the function FIE that

occurred before FCO was untered by evaluating FIE against the

* COR of the value of FOO is the HISTORY list beqginning with

the last function call. The second pair in this list, CADR,

corresponds to the binding of the function name. CAR of this
pair is the name itself. Hence CAADDR. .

39

T I e e TR TRy TR o KT LIBT L e B orp A s

E

HISTORY list before FOO, i.e., (EVAL (QUOTE FIE) (CDR FO0O)), etc

The HISTORY list can be used to create new variables. In
fact, ADVISE does this each time a function is evaluated when it
creates the variable VALUE and binds it to the value of the
function., This dotted pair, (VALUE . value), is inserted betwee

..the binding of *FN* and the binding of the function name. Thus[
later functions can determine whether'this function is in the
BEFORE or AFTER phase, and if AFTER, what the value of the

*
function was.

The User-PILOT Interface

‘1f we consider the entire system consisting of the user,
PILOT, and the user's programs as one program, then it should
be possible to modify the interfacus between the ﬁser and PILCT,
and PILOT and the user's program with the same techniques one
uses to modify the interfaces between procedures inside of the
user's programs. This section describes modifications of this

type that have been carried out in the current version of PILOT.

The uUser-PILOT-program configuration can be illustrated by

the following diagram:

DO [1®. ,
USER PILOT USER'S

PROGRAMS
® ©)

FIG.3 USER-PILOT INTERFACE

* Since HISTORY records only computations in progress, these
bindings last only until the return from the function. Thus
VALUE has a binding only during the time that AFTER auvice is
being evaluated.

40

In this diagram, the user, (:), requests PILOT to perform
an operation, such as advising a user function. PILOT performs
this operation on the user's progr&m, (E), and acknowledge§ com=~
pletion of the request, (:). When the user's programs are ex-
ecuted, they may interact with PILOT, at (:) and (:), either
through the medium cf the function ADVISE, or by specifically

callihg for services provided by PILOT, such as BREAK or FLIP,

It is important to obscrve that if the user utilizes PILOT
in writing and debugging his programs, as well as in modifying
them, i.e., if all of his communication Qith the machine is
under PILOT's auspices and go through interface (:), then there
is certain amount of tradeoff between efforts at improving inter-

face (:), and those concentrated on interfaces (:) and (:).

For example, we can relax the conventions imposed on commun-
ication between the user's programs and PILOT, so that when writ-
ing his programs, the user need not be concerned about the de-
tails of the interaction at (:). Alternatively, we can impose
very stringent requirements on this interaction, but still relieve
the uscr of the burden of conforming to these conventions by
transforming.his requests into a form which adheres to these
conventions at interface (:). The only important features of
the process are the two enupoints: relaxed and flexible inputs
by the user, and, ultimately, instructions recognized by the
machine, i.e., LISP computations. The choice of where along the
way the interpretations and transformations take place is

arbitrary except for questions of efficiency.

What has been done in the current PILOT system is to im-

plement a collection of powerful text-manipulating functions

41

§° e A T T Ty < ol FICETIN B & ST 7 o g =gy m 1L
TN

B e e 2]

within LISP in the form of FLIP, format 1}st grocessing lang~

uage. (48] The presence of FLIP makes it easy to introduce, at
interface (:), a translation scheme that transforms the user's
requests into calls to apprdpriate LISP functions, This is be-

cause FLIP is sufficiently sophisticated to allow a single rule

to specify many vaviations on a particular transformation. This
is a necessity for constructing the many-one mapping required
for flexible input. A less sophisticated language would either
restrict the user excessively or else force him to specify so

many different transformations as to be impractical,

In effect, by using FLIP, the user can devise his own con-
ventions aﬁd rules, essentially develop his own language, for
communicating with PILOT. The interpretation of this source
language iﬁ terms of LISP functions proviae the semantics of the
language, which can be expanded by definingvnew LISP functions
as needed, such as SYSTEM3., These correspond to the operations
PILOT performs at interface (:). The syntax of the language is
also controlled by the user and is therefore eésily expanded and
mooified to suit the user's own ideas as to.what is intuitive and
natural. (The particular conventions and translation scheme 1
have adopted for working with PILOT are described in the

Appendix 2.)

FLIP is also available tc the user for more coaventional
tasks.' A surpriéinq number of the operations performed by
programs fall under the heading of pattern-ﬁtiven data manipu=-
lation. The availability of FLIP considerably simplifies the

problem of specifying these operations. The user does not have

* It is the presence of FLIP that makes possible the sophisticated
editing available in the PILOT system.

42

. e

to program each operation anew, nor is he faced with the problem

T s

‘of devising a scheme which will translate and/or interpret these

. operations at interface (:). All of this may be postponed until

: FLIP itself is called from within the user's programs. In this
icase, FLIP may ye thought of as improving interface (:), as well
fas interface (:). Furthermore, enougﬁ attention has been devoted
ito efficiency in the construction of FLIP that the most sophis-
‘ticated programmer need not hesitate to use it in writing his own

programs.

_ Although most of the effort at modifying the user-PILOT
;interface has been directed at interface (:), the user may also
wish to improve interface‘(:)s The appendix describes some mod-
%ifications I have carried out with advice that affect this inter-
face, especially with regards to the procedure followed when an
error occurs.somewhere between the user's initial request and

the successful completion of the indicated operation at (:).

43

- oy .
L TWeTY

CHAPTER 4

FACILITIES IN THE PILOT SYSTEM

This chapter describes three of the facilities provided for
the user by the PILOT system. Central to these is the language
FLIP which is used by the system to process the user's requests,
as well as being available to the user for a variety of tasks.
FLIP is integral to EDIT, a collection of fairly sophisticated
editing routines that may be readily expanded by means of advice.
BREAK and BREAKPROG provide facilities for arresting the flow
of computation at a procedural interface so that thae user can
perform computations, perhaps make modifications in the system,
and then either continue with the computation or specify some

alternate path.

1. FLIP

FLIP incorporates a notation and a programming language for
expressing, from withiﬁ the LISP system, string transformations
such as those performed in COMIT or SNOBOL. These transforma=-
tions may be exemélified by the following instructions for a
transformation: find in this string the substring consisting of
the three elements immediately preceding the first occurrence
of an a, and find the element just after the occurrence or a
b which follows this a; if such elements exist. exchange the

position c¢f the three elements and the one element, delete the

a, and replace the b by a ¢.

Transformations of this type are fundamental for editing,
translating, in fact for performing any operation that is basic-
ally pattein-driven, i.e., specified by giving the gggm of the
output in terms of the form of the input. However, they are

difficult to express in the erplicit function-oriented nature

45

of LISP, although each could be individually programmed. ‘A
notation for expressing such transformations is the basis for
a number of programming languages that exist today,,such as
comrr, 131! snoaox.,usl and aize.'® Each provides a formal
method for seiecting substrings from & sirinq, and then indica-

ting the structure of the transformed string.

These formalisms make it easy to wiite rules which perform
étrinq transformations such as rearrangement, deletion, inserticn,
and selectipn of elements from contents. However, it is cum-~
bersome to express in these languages some of the operatiqns
which are expressed quite easily in LIS?, SOﬁe'of the latter
operations depend very strongly on the fact that LISP can have
sublists within lists to unlimited depth, whereas COMIT has

lists only to depth 3 and SNOBOL and AXLE deal only with linear
strings. ‘

An obvious solution to this notational difficulty is to
provide both types of language capability, function-directed
and format-directed list processing notation, within the same

programming systéem. These two capabilities are provided in

'PILOT by embedding FLiP!774%) in the LISP 1.5 programming

N
system,

FLIP Transformations

A transformation is specified in FLIP by providing a pattern,

which must match the structure to be transformed, and a format,

*The implementation of FLIP in LISP 1,5 is based upon but is a
considerablT generalizaticn over, programs and writings of
Bobrow. 15,8] "In adaition, it has been influenced by features of

the string processing languages described above, as well as by
those of CONVERT[12) another string processing language embedded
in LISP.)

46

-

i

which specifies how tﬂ:construct a new structure according to
the segmentation, or ﬁarsing, specified bi the pattern. These'
patterns and formats/ﬁre greatly qene}alized versions of the
left~half arnd right-half.rules of COMIT and SNOBOL. For example,
elementary patterns and formats can be variable names, results
of computations, disjunctive sets, or repeating subpatterns;
predicates can be associated with elementary patterns which
check reiationships among separated elements of the match; it is
no longer necesséry to restrict the operations to linear. strings
since elementary patterns can themselves match structures.
Furthermore, it is relatively easy to expand the semantics of
FLIP, adding new types of patterns and formats, by defining

appropriates LISP functions.

Since FL1fP is embedded within LISP, it does not have its
own control mechanisms. In fact, several different useful ex-
ecutive programs have been written in LISP to faciiitate using
sets of rules. Some of these do the following:

1. Repeat use of each rule until it fails, and then go c¢n
to the next.

2, Every time a rule is successful go back to the top of
the set of rules. On failure go to the next rule.

3. On a successful match, go to a specified labelled rule

(similar to COMIT).

(The latter algorithm is embodied in the LISP function
TRANSFORM, whizh is used in éhe translating scheme as well as
in the editor.) Since executive programs can easily be changed
ér written anew for each applications, the flow of control be-

tween rules is obviously not an important factor in the design

of FLIP.

47

Y BN o O TR~ el RTINS I & ST TR L S g e e v

b i

Notation in FLIP

Let us return to the transformation described earlier: find
in this string the substring consisting of the three elements
immediately preceding the first occurrence of an a, and find the
element just after the occurrence of a b which follows this a;
if such elements exist, exchange the position of the three ele-

ments and the one element, delete the a, and replace the b by a c. .

In COMIT, this‘operation is expressea by the following rule:

$+$83+a +5+h+81l+S=1+6+48+cCc+2+7

In the COMIT notation, the "$" matches anything, the $n
where n is a number, matches a segment of length n, and x
matches x, i.e.; a segment of length 1 consisting of the single
item x. The numbers in the right hand side of the rule refer
to the corresponding elements in the left hand side of the rule,
e.g., "5" refers to ihe single element "b", "2" refers té the

three elements preceding "a.”

The external notati{ of FLIP is in fact quite similar to
|
that of COMIT. Giving FUIP the pattern ($ $3 A $ B $1 $) and

the format (1 6 4 C 2 7)‘ ill cause the transformation described

-abr .e.-to be performed, i;v.,w(FLIP X (QUOTE ($ $3 A $ B $1 §))

{QUOTE (1 6 4 C 2 7))) specifies a LISP computation which trans-

forms the variable x according to this rule.

However, since FLIP may also be used on nonlinear strings
and has in it many features which do not have counterparts in
COMIT, e.g., use of predicates, repeating subpatterns, etc., it
has been necessary to expand the COMIT notation considerably.

For example, to cancel out the common factor in LISP expressions

48

o m——

such as (QUOTIENT X (TIMES A B X Y)), one uses the pattern

(QUOTIENT $1 (TIMES $ (/T 2) $)) and the format (TIMES (/T 3 2)
(/T 3 4)). The "/T* indicates that the numbering should begin

" at the "top"” of the parsing, i.e., (/T 3 2) is the second element,

in the third element of the parsing, or (A B), and (/T 2) is the

secénd element, or X. (Alternatively, one can spgcify that the

- numbering is to begin at the current lével, or up| a certain

 number of levels.) To find a string of three ele ents which are

| * 8
. immediately followed by their mirror image, one ukés the pattern

($ $3 $3 / (EQUAL (= REVERSE 2)) .$), where the predicate (EQUAL

(= REVERSE 2)), associated with ‘the second "$3", signifies that

_ the result of applying the LISP function REVERSE to the element

corresponding to the first $3, indicated by "2", must be egqual-

fto this element in order for the pattern to match,

However, it is not the intent of this discussion to describe

the operétion of FLIP in detail, but instead to inflicate the

‘ ways in which it can be useful, and the problems to which it is

applicable. For this purpose, the manner in which certain oper-
ations are expressed is not at all important, esﬂecially since

the current notation is arbitrary and ad hoc. (A'large part

- of the awkwardness of this notation is due to the clumsy way in

" vwhich reading and printing occur in the present LISP 1.5 system,

jand to the dearth of available symbols.) 1In any event, since

 utilization of FLIP involves a translation from an external lang~

f‘uaqe to a more efficient form for internal use, it would be

MApossible with more sophisticated translators to provide whatever

. notation the user wishes. Thus the important thing about FLIP

is the gemantic features made available by it. The examples on

the next pages are designed to illustrate some of these,.

49

¥

Applications of FLIP

Translation. FLIP was originaliy conceived and implemented
for a specific purpose: to proviue .in PILOT a capability for
transforming user requests into iISP cqﬁputations. The details
of this tfanslating scheme are described;in appendix 2. In
this example, 1 shall motivate and construct in greater detail

_one of these transformation rules,

Prefix notation plays an important part of the LISP formal~

ism. Relations are expressed with the name of the relation

first, e.g., (X IS A &EMBER OF Y) is‘(MEMBER X vY), (X IS LESS
THAN Y) is (LESSP X Y). This is convenient because it puts the -
name of the ope -ation in a canonical position, ana so avoids
the problem of identifying that member is the key wucd in'(x‘xs
A MEMBER OF Y). However, since English is basically an infix
notational language, the user must continually perform mental
transformations when programming in LISP. The translation scheme

implemented in PILOT is designed to lessen the user's burden.

This translator is basically a sequence of FLIP rules
which perform transformations on the input. Thus including a

rle such as:

(== $1 IS A MEMBER OF $1 =-) (== (MEMBER 2 -2) =-))
will allow the user to write

‘{eesX IS A MEMBER OF Y ...)

50

for

(voo (MEMBER X ¥))."

Sinilarly, ((-- $1 1S LESS THAN $1 ~-) (-- (LESSP 2 =2) =--)),
and ((-- $1 13 GREATER THAN $1 =-) (-- (GREATERP 2 -2j =-)), etc.
However, as we 1ntroduce‘fuzthet “IS RULES," the translation
‘process will be slowed down cdnsiderably, becausé 6f the increas?
ving numpier of attempted matches. 1In addition, the question of
space may kecomg crucial. We would Jike to have a single rule
handle all of the *1S* transformations. This would have the’
added advantage that we could also transform (X IS NOT A MEMBER

OF Y) into (NULL (MEMBER X Y))‘with the same rule,

The way to'construct such a rule is to use the éisjunctive
”EITHER".pattern, with a variable pattern name. For example,
'if we store the patterns for the IS transformations on the
property list of the atom 1S under the property PATTERNS, then
- $1 1S (EiTHER (= GET 1S PATTERNS)) -;~) will match if the
‘input list is of the form of one of the 1S PATTERNS. The
format (-- ((EITHER (= GET IS FORMATS))) =--) will then perfurm
‘the desired transformation, selecting the format correspondiny

Fto this mawch. To incorporate the NOT feature, we write instead

* A wora about notation:
1. The above rule translates the same as
- ({$ $1 IS A MEMBER OF 3J $) (1 (MEMBER 2 -2) -1)).

*~<" means either "$" or "1" or "-1" or even "NIL," “d¢pending con
the context., It repregents a DWIM statement - "DO WHAT I MEAN."
2, Negative numbers, such as -2, =1, serve the same function

as positive numbers, they refas to elements in the parsing.
However, with negative numbers, the numbering starts from the
right hand side and counts backward. Thus in th2 above,

"{MEMBER 2 ~2) is the same as (MEMBER 2 7) and also (ME.IBER ~7 .

51

- \ v e)

et ey

- TR I AT IR

AT T T AR TN

L
e
¢
L.
o
{
o

Qutput

(== $1 IS (EITHER (NOT) --) (EITHER (= GET IS PATTERNS)) ==}

and o ‘ I

(-- ((E;THER (NbLL (ETTHER (/T -2) (=.GET IS FORMATS)))
_{(EITHER (/T =-2) (= GET 1S FORMATS))))) ==}

With this rule, it is necessary to specify by (/T =-2) which

of the two “"EITHER's" we are referring to in the match (FLIP will

select the first one if none is specified).

Now, if we put on IS PATTERNS: (MEMBER OF $1), GREATER THAN
$1), (LESS THAN $1), even {ATOMIC) and (A NUMBER); and on IS
FORMATS: (MEMBER 2 (/T -2 -1)), (GREATERP 2 (/T -2 -1)), (LEssP 2>
(/T -2 =1)), (ATOﬁ 2), (NUMBERP 2), etc., the appropriate trans-
f&rmations will be performed. Furthermore, it is a simple matter

to write another rule which automatically does this, i.e., we

. can say (X 1S GREATER THAN Y MEANS GREATERP) and (GREATER THAN $1)

will be put on IS PATTERNS and (GREATERP ZF(/T =2 ~1)) on 1s
_FORMATS: if we say (x IS A NUMBER MEANS NUMBERP), then (A NUMBER)
will go on IS PATTERNS and (NUMBERP 2) on’ IS FORMATS, etc.

Frequeritly a programﬁer wiil vontent himseif with relatively
sterile output becaﬁse the extra labor involved in‘programming

fancler output does not Justify the returns. FLIP makes it easy
for programs to communicate with the user in text, as opposed to

list structure,

Suppose a program deals with data such as (AT PENCIL Y),
(NIL AT PENCIL COUNTY), and ((({AT PENCIL DESK) (AT>DESK HOME))

AT PENCIL COUNTY), The first 1list is’ the representation of the

52

”1

ST

i
1

‘gquestion: "Is the pencil at any y?" The second that of the state-

{hent, "The pencil is at the county" and the third, "If the pen-
éeil is at the desk and the desk is at the home, the pencil is at
}fhe county.". We would like to have the program output this in-
yformation this latter way instead of the way it is intetnally
represented.

To do this, we rroceed as follows:

I T a—

: " Pirst we define a function PHRASE which transforms (AT
PENCIL COUNTY) into (THE PENCIL IS AT THi COUNTY). The defini-

ftion of this function, using FLIP, is:

(LAMBDA (X) (FLIPQ X

(S1 (EITHER (1 / (VARIABLE)) ($1)) (EITHER (S1 / (VARIABLE))
(s1)))

((EITHER (ANY) (THE)) 2 IS 1 (EITHER 3 (ANY) (THE)) 3)))

: FLIPQ is the same as FLIP, except we don't have to quote the
latter two arguments, VARIABLE is a function which is true if
its argument is a variable, false otherwise. Note that PHRASE

ﬁpplied to (AT PENCIL Y) is (THE PINCIL IS AT ANY Y).

i
?3 Next we define a function QUESTION which transforms (AT
‘PENCIL COUNTY) into (IS THE PENCIL AT THE COUNTY). The definition

o£ this function is:

(LAMBDA (X) (FLIPQ X
($1 (EITHER ($1 / (VARIABLE)) ($1)) (EITHER ($1 / (VARIABLE))

(s1)) 1}
,“ (1s (EITHER (ANY) (THE)) 2 1 (EITHER 3 (ANY) (THE)) 3)))

This example is from Chapter 5, Experiments with a Question~-
Answering System.

53

T

.

B s e
-

‘. e o 2 . G, :
Using these two functions, we'can def.ine OUTPUT to handle
the three different data typé;:»1w‘vuh e

(LAMBDA (X) (FLIPQ X . © . o
/ S (EITHER (NIL'~~)‘($1 />(ATOM) =) ‘T
R S L 01 (EITHER ($1) --)) =-))

Eo L . (EITHER = .

; f | ' o " ((** (= PHRASE 2)) (= PERIOD})

o . ' ' - {(** (= QUESTION (/T 1))) (= QMARK)) -

E , (IF (** (= PLils% (= CAR (/€ 1 1))))

z‘ {EITHER (AND (** (= PHRASE 1))) ==) (= COMMA) .
(** (= PHRASE 2)) (= PERIOD)))))

In this definiticn, “##% denotes that the result of the
LIsp ccmputation‘is not to be treated as a single element and

inserted, but to be treated as a 1list and appended, so that the

resulﬁinq strucgure will be a linear list. The (/T‘l) in‘the
call to QUES?ION gives it as input what matched the tOp‘level)
EITHER, or the entire list X. Finally, the (/C 1 1) denotes
the first element in tle first element of the current gtructure,

_In this case, it is the same as writing (/T 11 1), or (= CAR 1).

Searching and Sorting

ey mi e S ATET I T S R AT RS L e

A surprising number of the more common tasks performed by

programs fall under the heading of pattern-driven data manipula-

tion. Thus, they could be written in FLIP., For example, when

we search a list fot'a particular item or groun of items, as
specitied by some relationship, we are performing the same oper-
;‘ o ation as that performed by the function MATCH in FLIP. Even

such mundane operations as sorting a list can be expressed simply
in the FLIP notation.

54

i, AL

o o e e eacToTEETERR TR
.

Su;pose we wish to define a function which will take tne list

e

(x x ¥ W X 2 ¥) and produce as output the list ((3 X) (2Y) (1w
(1 2)). The following function, using TRANSFORM, (see page 47},
w111 do this: ' '

(LAMBD:. (X) (TRANSFORM X (QUOTE (

e T T L,

" LOOP ((== $1 / (ATOM) (REPEAT $ (/T 2)) =--)
(-- 4 (REPEAT N 2) ((= (CAR Nj) 2)) LOOP)))))

e

" In this rule, N is the index of repetition. When the REPEAT

’M
format completes operation, CAR of N ic the number of times it

repeated.

1f instead we wanted as output (X X X Y Y W 2), we would add

to the above list of rules for TRANSFORM:

| ((REPEAT $1) (REPEAT (= CAR 1) (= CADR 1)))

This rule will transform ((3 X} (2 ¥Y) (1 W) (1 Z})) into
(XX XYY WZ),

fth. EDIT

Lo

Piogrammer: must have a way of editing their programs.

rhis is a simple consequence of the fact that prog.ammers make
Kistakes. Unfortunately, however, editing facilities are often
gimitive; the limiting factor in debugging programs may be the

interaction time with a keypunch.

One approach to finessing the duplicate button on the key

sunch is to construct .a context editor for the source material,

55

D e

C R s RS iR T £

’.

i

o

usually paper tape or card decks. This is the approach of Tape

Editor(42’ and ED.[11J Herg/the user moves an imagznary poxnter ‘

through his proqfam l;stan using context search, e.g9., locate
the character striﬁg’“CONs (CAAR x.‘ and performs insertions,
deletions, and reglacements. The edxtino program makea the
corresponding changes in the source material and issues’the user

a fresh version at the end of the editing session. |

For LISP programmers, the above procedure necessitates
leavxng the LISP system and the oriqinal program. Thxs may be
undesirable if the user is in the midst of a debuggxng sequence,.
especially if returning to the LiSP system involves a Iengthy
loading process. Another approach‘to the prablem‘of editing,
therefore,‘is to provide some form of editing facili*y within ‘
the LISP programming system. This is the approach of Hartin‘za]
and Bobrow.(I Here ‘the user has the adden advantage that he
can edxt list sttucture, instead of text althbugh this may make
it difficult to correct a simple parenthesis error. The opera-

tions corresponding to moving the pointer allow the user to

refer to piuces of list structure. Similarly, insertion, de=~

letion, and teplacement>commands specify changes in the structure.

At the end of the session, the editot produces a new version of"

the list structure. The programmer can then proceed with his

debuqqing 1mmed1ate1y.

From the standpoint of the LISP uéer,“this 1at£§r appréach
is superior. Howévet, for efficient LISP editing, the properties
of a structure éditor and a text editor are both required. The
user should be able to manipulate individual parentheses as k

easily as pleces of list structure.

56

“*““"'*'!ﬂEﬂ'"—"?“‘1!ﬂ-..-.-.lII-'!Hl--I!Hl--llﬂﬂii-ﬂnﬁnmvaNl&%ﬁ&ibﬁﬂmu»mi

L e REERREL T G

i

fﬁ ' Another deslrable feature of an editing program is a lanquage
!or express;ng editing operations., The absence of a language
tends to precluue conditional operations. The user cannot specify
operations involving uecisions, even simple ones, surh as find an
‘X' that 1mmediate1y follows a "Y” - except bv searching for a
“Y’ and exanining the next element hi~se1f. A language 15 also

: necessary to enable the user to define new operations, without -

_reprogramming the editor.

Usinq FLIP for Editing

J

R The presence of FLIP provides a 1anguagc for describing
cdiiinq operations. In fact, all that ie necessary to construct
an editor fs to write an executive program which accepts requests
trom the user and calls FLIP. The insertions, deletions, and
zeplacements of ﬂgitxng are specified by FLIP patterns and for-
mats. Furthermore, since FLIP rules are themselves list structure,
it is easy eo modify them using other FLIP rules - e.g., by giving

‘advice. . In this way, a sophisticated editor can be built around

the FLIP language with very little additional effort.

Such an editor has been included in the PILOT system. The

following discussion presents its salient features. [49]

R

Example
To give the general flavor of editing using FLIP, suppose

ihe definition of the function FOO is

144]

* TECO, ‘ tape editor and corrector,is an excellent example
of the advantages of an euitor with a language.

57

i MU S LTI T i AL S & S NI 7 S e

LY

P
Spomgand sy

RS S e e v

- st

e R e i

(LAMBDA (X) (PROG NIL (COND . f"‘vfk‘t o ‘ :
((EQ (CAR X) -1) (RETURN NIL))) .
= (SETQ Y (PLUS (Y CAR X)))
(SETQ X (CDR X))
(GO START))}
. g 1
Let us add Y to the argument list,'andtlabel the ‘ONa”state-'”'%"
ment START. v

edit (foo expr nil) . ‘
{match -- x “=i. (find tie left-Lost x]
(form 1 2 v+ 3) ' “ [follow it by y)

(match <« nit «2) ‘(the first NLIL)
(form 1 2 start 3) ' :

stop - _
FOO ‘ {value of EDIT]

We could perform both changes in a single match and construct
4f we desired. Also, we could check our intermediate results by

examining the output of the matches. o

edit (foo expr nil)

{(flip (== x == ni1 =) (1 2y 3 4 start 5))

(match -- prog -- cond --)
(LAMBDA (X ¥) (

Ivhat 15‘1 in la%t;match?}
NIL START (© Ithis is 3]

sto L
- g FOO - AR {the value of EuIT]

Flattening Lists and Balancing Parentheses Bt ‘ : Cs

For all intents and purposes, in the above example, we were
editing a string of atoms. This etfect is achieved by "flattening”
all S-expressions that are to be edited into a single list of

atoms, substituting the special atoms L* for left parentheses,

* *form“ is used instead of "cons" for "construct" because the
word “cons® would be confused with the LISP function CONS,

58

o
b

?i

Gt
2

!' for right parentheses, and P* for dot. For example, ((A . B)

cc « D)} flattens to (L' L* A P* BR* L* C P* D R* R*), Since

L' R', and P* are atoms the same as X, Y, and NIL, we can insert

lnd delece them as we'l as any other.‘ While inside of the editor, .

.me can even manipulate "partial” lists such as " (LAMBDA (X Y) (",
'epthsenten as (L' LAuBuA L* X Y R* u*), The only restriction

is that the list must "unflatten® correcctly when we wish to

;eave the editor.

(.

i
¢

To restore the properties of list structure to the editcr,
l @,, to allow us to refer to pieces of list structure as well

%s strinqs of atoms, we now expand the semantics of FLIP by adding

a new elementary pattern, UPN. This elementary pattern signals

?LIP to fiﬁd the nth matching pair of pa;entheses, that is, to
;o UP n pairs of parentheses starting from the current position.
tn effect, what the UPN pattern says, for n=2, is "I didn't
really want to match with (..) but with the list containing the
}15t containing (..). However, it was easier to find this list
Q; first locatiné {(..), and then bacging up two sets of paren-
gheses.' Thus in the example on the previous page, we could
find the structure ((EQ (CAR X) -1) (RETURN NIL)) by matching
with (~- ((EQ (CAR X) -1) (RETURN NIL)) --) (FLIP will auto-
;htically flatten the input pattern), or by matching with

(-= EQ UP2 --), or {(-- CAR UP3 --), or (-- RETURN UP2 --).
;hO‘UPN‘yattern would then match with the structure ((EQ (CAR X)
;i)(RsTURN N1IL)), which could be transformed as desjired.

59

:
4
i
;
:
4

b

: !
3
«

|
¢ Adding New Operations A

Ly

Suppose we want to

ro R INSERT (SETQ X 1) (SETQ Y NIL) ~ APTER CAR -- CDR UP2. |

i.e., after the UP2. We match with (== CAR == CDR UP2 --), aud

SO C ~ construct with (12345 (SETQ X 1) (SETQ Y NIL) =1). To-
Lo REPLACE CONS UP2 WITH (LIST 2), :
v 4 '
" we match with (-- CONS UP2 -=) and construct with
2 S R (1 2 (LIST z) -1).

Ir fact, to insert a after B, match with_b"fk-) and con-

AR s (e T

strdctvwith (123 ... n-2a-1), where n is the length of B.

i To insert @ before B, match with (-- B --) and construct“ with -
; (L23...na-=2-1), To replace B with a , match with‘(-- B‘—-)
? ‘ : and construct with (1 2 3 ... n a-1), etc. ;
§ .This suggests that it should be possible to give_the‘edito;
27 ‘% requests such as (INSLRT (SETQVX 1) (SETQ Y NIL) AFTER TAR w-

CDR UP2), and (REPLACE CONS UP2 WITH (LIST Z)), by defining the
: cperations INSERT AFTER, INSERT BEFORE, REPLACE WITH, €tC.. -— .o ==
'% ' This is in fact easy to accomplish by first traﬁsforﬁinq
% : the request to EDIT according to a set of BDIT>RULES; Adding
;z' ' new FLIP yules to this list allows the usexr to define new oéera-'
f’ tions. For example, to define
by

60

e — Y o AT ks £ R -f.’!’:,‘.?ﬂ’-ﬂﬁﬁ"; S U i
- . R - e - e - " - WS BIRNN i ¥ - N < .

P N —

i . (REPLACE ... WITH ...) . we add the rule
3 e . ,
£ ‘ 1

? ((REPLACE § WITH §) (FLIP cs/g's) ((REPEAT (= .LENGTH 2)
it E

[(= (CAR N})) 4 (QUOTE -1)))} .

54‘ ‘This transforms (RE?LACE CONS UP2 WITH iLiST Z)) into

3FL;P {$ CONS UP2 $) (1 2 (LIST Z) =-1)), which is then'recégnized
%s é request for FLIP. New operations can even be defined in
;érms of old ones, e.g9.. ((DELETE $) (REPLACE 2 WITH)) aliows

the user to specify (DELETE CONS UP2), With a little practice,
the user cun define fairly complicated operations such as

tcnancr ALL a TO B), (SUBEXP @ BEFORE B) (which allows one
gq‘move structure from one place to‘another) and (WHAT ¥s a),
éor interrogating the current status of the edited structure.
In this waYy, the user can build up his cwn vocahﬁ|4\\ ard Jangs
&age for editing, always returning to the basi: FLiV operation

tor complicated and/or spec¢ial purpose operatljons,

III. BREAK AND BREAKPROG

5, In order to edit (or adGise) an incorrect proceuute, we
ﬂust first kilow what procedute is at fault. and the precise
tntu.a of the problem, Finding this out can be a very difficult
gqsk. 1f the error is such ‘that the program does not produce
éﬁy‘meanihgful output at nli, there may be no course of action
lett but to examine the 2ction of a large number of procedures
tn detail. Even when we have some idea of where the trouble
spot may lie,‘and in inkling of what it is, we must still be
ible-to examine closely the operation of a procedure. We want

:0 £ind out what changes it makes, if any, in its essential

W

61

L e e KN g

SR

variables. Basically, what we want to do is arrest the flow of
computation at the entry and exit to a procedure, perform various
computations, and then either continue with the normal flow of

control, or indicate alternate routing.

There is great similarity between this operation and that
of advising. 1In fact, the two are identical, except that with
advising, the computations are prespecifiedbon the property list
of the procedure, whereas with this operation, which I call
breaking, they are entered through the kefboard at the time of
the break, This of course is the essential point of breaking,
Since the user does not know what the trouble is, he cannot
fully anticipate the questions (computations) he will want to
ask, prior to the time of the break. 1In general, each question
will depend on the "answer®™ he receives to the previous one.
Breaking is implemented in PILOT by a function BREAKI.[48]
BREAK] takes as inpdt the definition oy a procedure, and allows
the user to execute LISP computations before and after evaluating
this procedure. These computations are entered from the key-

board, and, after execution, their value is printed.

BREAK]l plays a role in breaking similar to that of ADVISE

in advising., However, since efficiency is not imporiant in
. :

BREAK1l, the various advising conventions concerning exit from
a procedure have been replaced with four special commands: QUIT,

STOP, RETURN, AND EVAL, for which BREAK1 makes a special check,

* In general, whenever input or output is required, efficiency
of computation is not important, because the computation time
is so small compared with the time reguired for the input and
output processes,

62

=

U

{

i QUIT, STOP, AND RETURN specify exits from the entire breaking
?Aépéxation: >QUIT induées a LISP error; STOP is the ncrmal (un=-
broken) return from the procedure; and RETURN specifies a return
with some other value, i.e., via ancgher computation., ‘EVAL

is used when the user wishes to evaluate the procedure, without

* exiting from the break. This corresponds to going from the

{, BEFORE to AFTER phase in advising, except that with breaki
& this can be done more than once. For example, after an EVAL
~ command, the user can check the value of the procedure, make

some changes, and EVAL again,

Breaking a procedure involves replacing its definition witﬁ
a call to BREAK1. Again, note the similarity to advising. There
are two functions available for this purpose. BREAK is used
' when the procedure is a LISP function. BREAKPROG is used when
~F the procedure occurs inside of a LISP function. BREAK gets :he
function definition from the property list. BREAKPROG calls
EDiT to locate the procedure in question and to make the appro-
priate changes. Since one of the arguments of BREAKIL is ay
breaking condition, the user can specify that a break is to(ge’
conditional upon the result of some computation, and thereby

T'postpone examination of the procedure until a crucial joint in

' the calculation occurs.

63

]
A
4

R QI

St i 1o ey A et

P

CHAPTER S

£l . EXPERIMENTS WITH A QUESTION-ANSWERING 5YSTEM

R Two detalled examples are presented in this chapter and the
next. They illustrate the use of the PILOT system. An attempt
has been made to give the reader the flavor of an actual session
at the console. The complete user-PILOT dialogue is included,
,along with anecdotal comments explaining what is happening.

; ,

i
i

‘Preface
v Because it is impossible to allow to each reader himself
irteraction Qith the system, I have tried, in these chapters,

ko give its flavor by going through an example; 1 have attempted
§?d impart the idea behind each interaction wilLhout dwelling on
i;he details. Appendix 2, Using PILOT, delves more deeply into
ithe conventions anu operation of the system.

Experiments with a Deductive Question-Answering System

In 1964, Fischer Black programmed in LISP a Deauctive

121 This iystém“ié"simliaibio"théﬂhﬁw“

(bucstion-hnswering System,
1)

;ﬁﬂvice Taker proposed by McCarthy.' and solves McCarthy's

{*ajrport problem,* among others.
¥

» In the airport problem, the program is supplied with certain
‘facts: at (I,desk) (which is McCarthy's formalization of "1 am
Tht the desk”), at(uesk,home),at(car,home),at(home,county),

gt(airport,county),walkable(home),drlvable(county), along with
‘Qeneral and specific rules relating those facts, such as the

transistivity of the "at" relationship: at(x,y) at(y,z) at{x,z).

65

AR i

e

s

e

cnton e

e ——

It is then asked to solve the "problem® posed by the premise
*want (at, {I,airport))®, in other words to prcocduce a deductive

chain which terminates with "at(I,airport)."

The operationnof Black's system can better be explained with
a éimpler’corpus. Let us assume the program is §£ven:
in(pencil.uesk), .
in (desk,home}, A B : » B
in (home,county),
in(x,y)—=at(x,y),

.in‘xvY)nat‘Y:z)"’att(xnz)o)) » S ’ ;

When asked the question "Is my péncgi at the county,” i.e;,
at (pencil,county), the program looks for a statement whose con-
sequent matches the question, and finds two: in(péncil,county)ﬁ-
at(pencil,county), and in(pencil,y).at(y,county)-at(pencil,county).‘.é
It then considers as a subquestion "js my‘pencil in the céunty”‘
and finding no statements that match, concludes that this question
cannot be answered. It therefore considers as a subquestion,
the first antecédent in the remaining statement, namely
"in(pencil,y),"” which asks "what is my pencil in?" "in(pencil,y)"
matches "in(pencil,desk).” Since this is a known fact, the
deduction is immediate, and since there are no other matches, ;
the answer to the question “"in(pencil,y)® is "in{pencil,desk).” ‘ f
The program then attempts to answer “at(desk,county),” because

then it could deduce "at{pencil,county),” etec.
One of the interesting problems of this system is that

endless deductions can result because the same question occurs

as a subquestion of itself. For example, if the corpus were

66

(pencil desk) ,at (desk, hone),at(home,county) at(x . Y) aat(y.z)-
(x 2}, then given the question "at(pencil,county),” the sub-

eation "at (pencil,y)" would keep repeating. Dr. Black dis-'

sses various waye to prevent endless deduction in his thesis,

e &*:-'lt e

raises various objections to eaci of them., - Unfortunately,‘
ﬁplementing and testing each method involved considerable re-
‘oqramming. D.G. Bobrow aquested that PILOT could be used

4 make these modifications and that this woulo provide an ex- -
!llent test for it. 1In particular, since the procedures used

i this example woula not only be compiled subroutine: but would
gyc been written by an entirely different person, it would .
;ﬁbnsttate whether or not PILOT really allowed the user to

%;ﬁk of a procedure as a little black box with input-cutput
gﬁracteristics. Accordingly. I copied the function definitions
:r Black's system from the appendix of his thesis, and loaded ’

nen into PILOT.

ﬂul Lo

‘Susmary of the Experiment

?; Since the only output provlded by Black's program was an

ihaustlvc trace of the two main functions, SOLUTION1 and
JLUTIONZ the first step was to get the program to print out

- ho deductive chain in some readable fashion. When this vas

snc. I discovercd that the program was written to produce all
ésslble answexo to a question. When the question contained
éivariablea, €.g., at(pencil,county), this meant that the pro-"
Eam would continue to look for an alternative way of answering
&};question even if it had already satisfactorily deduced the .

i -
psuer. This situation was rcadily corrected by advice,

‘The way the prograa operates is as follows: if the question is
AT PENCIL Y), it returns a list of all the facts satisfying the
uestion. If the question is (AT PENCIL COUNTY), it also returns
{1ist of all facts satisfying the question, but in this case
here can be only one -« (AT PENCIL COUNTY). auenuany what it

oes i. say “Yes, the pencil is at the county.”

Wi

67

S

IS B

'
b

I
i
:,i';“
A
P
i)
&
g
£
g‘i
v
i

L
B
T
b
£
¥
3
&
@
i
¥
B
i
%‘,‘
3
r

IR AT R,

LR R

s e,

e
43

S I S R BT ST

L e T T T

s e S R R)

i i At S T R e TR 7 st

At this point, I decided that it would be easier for me to -

 follow the deduction if the output were in a more readable for-
'mat. Dr. Black had described the internal representations used
for questions, facts, and deductive rules., 1 therefore wrote
three functions, QUESTION, PHRASB AND CLAUSE. whlch used PLIP,
and transformad the internal :epresentation into English.
PHRASE wculd take something of the form (AT PENCIL COUNTY) and
trans[otm it into (THE PENCIL IS‘AT THE COUNTY). QUESTION

produced (IS THE PENCIL AT THE COUNTY Q) from (AT PENCIL COUNTY){

(when it was designated as a question).- CLAUSE.would také an
arbitrary éxpression, decide whéthef it was a guesticn or a
statement, aﬁd‘then perform the approériate transformation,‘
‘e.g., ({(AT PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY) become
(IF THE‘PENCIL IS IN ANY Y AND ANY Y IS AT THE COUNTY, THE
PENCIL 1S AT THE COUNTY).

The protocol that follows gives the definition of these
functions. It shows how BREAK was useful in debugging them and

how advice was used to correct the one bug that was found.

After I had the program more or less talking td me, I
attempted 'to solve tlie original problem, that of endless de-
duction. The first solution was to limit the number of quesﬁions
considered., Hhén this iimit was set at 2, the program could
not get an answer to 'at(penéil,county).' Since I was going
to play with this parameter, 1 advised the function to allow
me to input this parameter along with the question. Giving it
a limit of 3, the program could answer “at (pencil,county) "
although it was clear it did so inéfficiently.. X also tried
the quastion "at(pencil,y).” With a limit of 1, the program

‘got one answers at(pencil,desk). With a limit of 2, it got two

68

N S

e P e e

B e T AP S— _,v_l

ey

answers: at(pencil, home) and at(pencil,desk). With a limit of'¥ j*

3, after much labor, all three answers, at(pencil,county),

at (pencil,Home) and at(pencil,desk) were obtained.

The last modification undertaken was to ingtruct the program

to look for a repeated subquestion, and if one were encountered, -

to return with any anéwers already foundvto that question in-~
stead of considering it anew. With this modification the program
obtained all thres answers to at(pencil,y) in a very satisfactory
manner, with less than half of the effort of the previous method
{1.e., setting an arbitrary limit on the number of recursive

tunction calls allowed).
Protocol

Initially the only facility for monitoring the operation
of the program was the trace feature in LISP. I traced SOLUTION1

and SOLUTION2, which were the main functions. From the text of

the thesis, I knew that (AT PENCIL COUNTY) was a question, and:

(NIL IN DESK HOME), (((IN PENCIL COUNTY)) AT PENCIL COUNTY)

were the way statements were represented. It thus became clear

that SOLUTION1 handled questions and SCLUTIONZ2 took a statement

and tried to find a deduction that produced it,

solutfonl ((at pencil county))

ARGUMENTS OF SOLUTIONI
(AT PENCIL COUNTY)

ARGUMENTS OF SOLUTIONZ
({{(IN PENCIL COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION?
(IN PENCIL COUNTY)

69

R,y g, G e Natk TR YT,

PR 1.

: ‘

Lo

{

=5 i | VALUE OF SOLUTION]
; § { NIL :

= ; VALUE OF SOLUTION2

T R R e R L T

B et

EES

T TR e TR R T

e e A

V
. !
i

NIL

(IN PENCIL Y)

VALUE OF SOLUTION?2
((IN PENCIL DESK})

VALUE OF SOLUTION]
((IN PENCIL DESK))

(AT DESK COUNTY)

"ARGUMENTS OF SGLUTIONZ

ARGUMENTS OF SOLUTION2
T((IN PENCIL Y) (AT ¥

ARG sMENTS OF SOLUTIONI

ARGUMENTS OF SOLUTIONZ
(NIL IN PENCIL DESK)

ARGUMENTS OF SOLUTION2 -
({{AT DESK COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF SOLUTIONI

COUNTY)) AT PENCIL COUNTY)

‘(((IN DESK COUNTY)) AT DESK COUNTY)

ARGUMENTS OF SOLUTION}

(XN DFESK COUNYY)
,V?LUE OF SOLUTION]

VALUE OF SOLUTIONZ
‘NIL

i

>

etc,

2 ol ? . JRR

(IN COUNTY V)

}

YALUE OF SOLUTIONI

NIL o
1

VALUE OF SOLUTION2
I

VALUE OF SOLUTIONL

NIL

VALUE OF SOLUTION2
NIL

RGUMENTS OF SOLUTION2
{((IN DESK'Y) (AT Y COUNTY)) AT DESK COUNTY)

ARGUMENTS OF SOLUTIONZ
{((IN COUNTY ¥) (AT Y COUNTY)) AT COUNTY COUNTY)
AR

GUMENTS OF SOLUTION1

70

s i L

B A s N T e

LRI Yt

ot R e

b
}‘_u

i

sotutionl
ARGUMENTS OF SOLUTION1

VALUE OF SOLUTION2
NIL

VALUE OF SOLUTION]
((AT HOME COUNTY))

ARGUMENTS OF SOLUTION2
(NIL AT DESK COUNTY)

VALUE OF SOLUTION2
{(AT DESK COUNTY)®

VALUE OF SOLUTIONZ
{(AT DESK COUNTY))

VALUE OF SOLUTION2

{(AT DESK COUNTY))
VALUE OF SOLUTIONI

{(AT DESK COUNTY))

ARGUMENTS OF SOLUTIONZ
{NIL AT PENCIL COUNTY)

YALUE OF SOLUTION2

((AT PENCIL COUNTY))

VALUE OF SOLUTIONZ

{(AT PENCIL COUNTY))

VALUE OF SOLUTION2

. ((AT PENCIL COUNTY))

VALUE OF SOLUTION]
2§AT PENCIL CIUNTY)
AT PENCIL COUNTY)

. csetq (corpus corpus?)

((NIL AT PENCIL DESK) (NIL AT DESK HOME) (NIL AT HOME

COUNTY) (iiAT X Y) (AT Y Z)) AT X 2))
at pencil county

(AT PENCIL COUNTY)

ARGUMENTS OF SOLUTION2
(((AT PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)

ARGUMENTS OF,SOLUTXONI

(AT PENCIL Y

ARGUMENTS OF SCLUTION2
(NIL AT PENCIL DESK)

Pt S A T S P T

Jin T —————E

LR RN e

e

i
i
p

ke S

VALUE OF SOLUTION2
((AT PENCIL DESK))

ARGUMENTS OF SOLUTIONZ

ARGUMENTS OF SOLUTIONI
(AT PENCIL U) o

" ARGUMENTS OF SOLUTIONZ -

(NIL AT PENCIL DESK)

VALUE OF SOLUTIONZ

((AT PENCIL DESK))

ARGUMENTS OF SQLUTION2 :
(((AT PENCIL Y) (AT Y Z)) AT PENCIL Z)

ARGUMENTS OF SOLUTIONI
(AT PENCIL Y)

ARGUMENTS OF SOLUTIONZ
(NIL AT PENCIL DESK)

VALUE OF SOLUTICN?
{(AT PENCIL DESK))

ARGUMENTS OF SOLUTIONZ :
({(AT PENCIL U) (AT U Z}) AT PENCIL Z)

ARGUMENTS OF S

(((AT PENCIL U) (AT U Z)) AT PENCIL 2) . .

Here I used corpus2, the corpus ln which looping may occdr.

As can be
deduction,

_which will call SOLUTIONl and initiate the deduct
time I enter SOLUTION1l or SOLUTION2Z during the de

will save thair arguments on a dummy veriable - which 1 will

seen from the trace, the program is in

what I plan to do is to define a new fu
1

call SOLUYION. 3if when I leave thebfunction, its

sduction, 1

an endless

| ‘ .
ction, SOLVE,

fon. Each

value is

NIL, I'31l then remove its argument from SOLUTION. SOLUTION is -

thus a first-in first-out list of arguments for SOLUTION]1 and

SOLUTICN2,

questions and gtatements that produced non-null values, i.e.,

When 1 get finished, SOLUTION will ha

those actually part of the deduction,

72

ve all of the

i &G wer - IVHRETOTNN

(define solve (x) as soluticnl x)
{SOLVE)

U‘Defininq SOLVE.

(tell solve before, dc bind solution to nil)
SOLVE)

8 Telling SOLVE to BIND solution to NIL. The DO means this

v :
advice is to be executed without disrupting the normal flow of

santrol - f.e., SOLUTION] will still be entered.

;; |
(te1? solutionl befere, do save x on solution)
SOLUTION]

=T D T e

Telling SOLUTION]1 to SAVE on SOLUTION.

{(translate ((either (before $1) $1) ($1 $1) (Sl;)
: +=) as (tell (efther (2 1) (2) { 3))

» do
{TRANSLATE RULES)

1 {= normal

At this point I realize that frequently I use this sort of
jdvice, i.e., DO something and go on, so I add a new translation

;ule to handle it. With this rule, (solution2 : save y on

qolution) will become (TELL SOLUTION2 BEFORE DO SAVE Y ON SOLUTION).

i
i

-

{solution2 : save y on solution)
SOLUTIONZ2

Telling SOLUTION2Z to SAVE Y.

e e

(after solutionl : if value is null, then pop solution) -
SOLUTION]

73

o e

e R

After I come out of SOLUTIONl, if its value is NIL, I
" want to remove X from SOLUTION. ‘

(use solutionl after for solution? after)
{SOLUTIONI AFTER) o

Similarly for SOLUTION2.

(after solve : mapc solution (print x))
SOLVE '

After 1 get done, f want to see SOLUTION.

solve {(at pencil county))

MIL AT PENCIL COUNTY)

NIL AT DESK COUNTY)

IN HOME Y)

((IN HOME Y) (AT Y COUNTY)) AT HOME COUNTY)
NIL AT HOME COUNTY)
NIL IN HOME COUNTY)

IN HOME COUNTY)

((IN HOME COUNTY)) AT HOME COUNTY)

AT HOME COUNTY)
1((AT HOME COUNTY)) AT DESK COUNTY)
(NIL IN DESK HOME)

IN DESK Y)

((IN DESK Y) (AT ¥ COUNTY)) AT DESK COUNTY)
AT DESK COUNTY)

((AT DESK COUNTY)) AT PENCIL COUNTY)

NIL IN PENCIL DESK)

IN PENCIL Y)

((IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
AT PENCIL COUNTY) .

(AT PENCIL COUNTY))

Now 1 ask the gquestion at({pencil,county) again.

The first thing 1 notice is that'I forgot to reverse
SOLUTION and the deduction is reversed. I also notice that
after answering the question {IN HOME COUNTY) with the fact
(WIL IN HOME COUNTY), the program went on trying to get other

answers via the statement (((IN HOME Y) (AT Y COUNTY)) AT HOME

74

s et a e aBR T

ST T e s e g, o« o v P

=

COUNTY). I plan to remedy this. 1In order to evaluate the
program's performance before and after this change, and others,
1 will make the program count the number of times it enters

SOLUTIONY and |SOLUTIONZ.

icharge solve after ”
replace solution with (reverse solution)))

{SOLVE AFTER)

Reversing aolﬁtion.

{solve : bind number to 0)
SOLVE

Setting up a dummy variable NUMBER and binding it to 0.

{transtate (- fncrement 31 -) as (- (setq 3 (addl 3)) -))
(TRANSLATE RULES)
|
|
Defining what INCREMENT means.
(solutionl : tncrement number)
SOLUTION] .
]
| : |
Telling $0LUTION1 to INCREMENT NUMBER.

|

(solutfon? : fncrement number)
SOLYTION?Z .

i
t

Similarl$ for SOLUTIONZ,

i

(after solve : {print cons number ‘{function calls)))
SOLYE - :

b

'

Telling SOLVE to print NUMBER.

75

I P

1

. s
Ut s kit S TN T RN S e i

S SR et R A S s e

NPRRE RS

e et

oy

ve ((at pencil county))

T PENCIL COUNTY)

(IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
N PENCIL Y)

IL IN PENCIL DESK)

(Af DESK CuuUNTY)) AT PENCIL COUNTY)

{(IN DESK ¥) (AT Y COUNTY)) AT DESK COUNTY)
In DESK V)

NIL IN DESK HOME

((AT HOME COUNTY)) AT DESK COUNTY)

AT HOME COUNTY)

((IN HOME COUNTY)) AT HOME COUNTY)

IN HOME COUNTY) .

NIL IN HOME COUNTY)

NIL AT HOME.CUUNTY)

((IN HOME ¥) (AT Y COUNTY)} AT HOME CGUNTY)
IN HOME Y)

NIL AT DESK COUNTY)

NIL AT PENCIL COUNTY)

{30 FUNCTION CALLS)
((AT PENCIL COUNTY))

I am now ready to tell the program not to look for additional

answers to questions which do not contain ary variables.

{solutionl : bind val to nil)
SOLUTIONI

I create the variable VAL and bind it to NIL. This will
bind VAL to NIL each time SOLUTION1 is entered. Thus there will

be a value for VAL associated with each question.

(after sclution? : (setq val valué))
SOLUTION2

When I leave SOLUTIONZ, I will set VAL to the value of
SOLUTION2. The particular VAL that will be set will be the
one associated with the question which created the statement

that SOLUTIONZ2 is considering currently.

76

“(tell solutfon2, (before number advice)
- 1f val and (variables x) is null, then quit)

uhbe:. if VAL is true, which means I already obtained one

eans that there are no variables in the question, then it,

NSOLUT;ONZ, should quit, i.e., return with NIL.

solve ((at pencil county))
AT PENCIL COUNTY)
({IN PENCIL Y) (AT Y COUNTY)) AT PENCIL COUNTY)
IN PENCIL Y).
NIL IN PENCIL DESK)
((AT DESX COUNTY)) AT PENCIL COUNTY)
AT DESK COUNTY)
((IN DESK Y} (AT ¥ COUNTY)}) AT DESK COUNTY)
IN DESK Y}
NlL IN DE3SK HOME
((AT MOME COUNTY)) AT DESX COUNTY)
AT HOME COUNTY)
i ‘ ({IN HOME COUNTY)) AT HOME COUNTY)
v (IN HOME COUNTY)

“ O NIL IN HOME COUKTY

B NiL AT HOME COUNTY

NIL AT DESK COUNTY . .

NIL AT PENCIL COURTY) ’W

(21 FUNCTION CALLS)
(CAT PENCIL COUNTY)) : e

e

; NOV“I'kuﬂ the program aqiin;* Note that this tii there’

- are only 21 function calls, and that the extra effort at the

end has heen eliminatcd.

* 1 will not count as a bona fide call to SOLUTION2 if it 1-
not actualiy entered.

Lo VARIABLES is a function in Black's original system.

77

(sonurronz BEFORE) R
ﬁb&‘ivtell‘SOLUTXONZ, before the advice which increments ;

nsver to this question, and 1f (VARIABLES X) is nxn, which

s

ERESOER SR T

£ e N
o \

e, DA 2 S SR DR L SN 0

English Output . ; ‘
From the ‘thesis, T know that a list beginning with a list,

including the empty list, is a statement, and lists headed by

atomsireptesent auestions, = Why no’ make SOLVE talk Ehglish to me?

define phrase (x) as fli :
$1 (either ($1 / (variuble)) (Sl) (either ($1 / [var-
1ab1e)) (Sl))) ((efther 2 (any 1) (¢

{any 1) (the 1))})
(PHRASE)

I define the function PHRASE. PHRASE given (AT PENCIL

' COUNTY) will produce (THE PENCIL 1S AT THE COUNTY). PHRASE

given (AT PENCIL ¥) will produce (THE PENCIL IS AT ANY Y).

define questfon {x) as flipq phrase x {$ fis s)
=cr) 2134q) , :
QUESTION)

QUESTION is similar to PHRASE., QUESTION ((AT PENCIL COUNTY))

~is (IS THE PENCIL AT THE COUNTY Q). QUESTION ((AT PENCIL Y)) is

(IS THE PENCIL AT ANY Y Q).

dﬁ{ine clause (x) as f11pq x ((either
n -
{$1 {eith $l) - -
3); er {$1) -}) -)
‘either -
(a2 phrase 2)))
1f(£:"(- ghrasel (2¢ 1 1})) (eit?er*sl? 1 g) (angJ))
b rase s comm -
(s" (= qugstion 1‘;; (= :er:od {= crg fase

CLAUSE will transform questions or statements from Black's

internal represeh*ation into Enqlish.

78

he I)) is 1 (either' oo

et ke TR e

¥
q

. AR "
RO o AN ’»E .“E "":‘3";«1‘“ Caclal oMt®

phrase {(at pencil county)) ; <
S (THE PENCIL 1S AT THE COUNTY)} . K
i question {(at pencil y)) 5

IS THE PENCIL AT ANY Y q; :

« c}ause ((at pencil county))

‘)IS THE PENCIL AT THE CQUNTY @ .
_ clause ((ni1 at pencil county))
B)(THE PENCIL IS AT THE couurv . i
] clause ((((at pencii y) (at y county)) at pencil county))
4 ’(IF ND » THE PENCIL IS AT THE COUNTY ,
4 A Bug in CLAUSE! Let's see if PHRASE is doing the right thing.
S | '
.~ . - break (phrase t x) : : _ : S
o - PHRASE - ‘ ‘ - S
{% I BREAK on PHRASE, the "t" means that it will alvays break,
nnd “x that 1t will print the value of X.
v cleuse ((((at encit y) (at 'y county)) at pencil county))
B BREAK IN PHRASE) v
B {AT PENCIL Y))
e quit
; PROCEED:)
% The trouble 1- an extra set of patenthsses in certain sizu~ - .
ﬁciens.
? B ¢ UNBRBAR PHRASE and advil‘ it that whcn {CDR X) is null,
io take (CAR X) instead of X. K
b B
&
E‘ undreak (phrase)
£ PHRASE
' (phrase : if (cdr x) §s null, then (setq x car x))
. PHRASE ,
[

79

Eu»uﬂlN'lH'IlHIFU.I'lIFﬂHbﬁﬁuihlllllﬂt!lﬂ!lll'tr*: Yy~ s AT

JETIE TSNS Tt Ty S

e ks 2 e

M
L8
v
.

FRCR 825X~

g] "MW

© i S e S A P S e 2o

g e N T R, A AT i S ey) T
.

1
, ; ; clause {{ ((at pencil y) (a county)) at pencil county),
5 (1F THE PENCIL IS AT ANY Y N ANY Y IS AT THE COUNTY, THI
; PERCIL 1S AT THE COUNTY ‘ 1

; ‘ ~ k

Now CLAUSE works correctly,

Coy

O . : ' 4 f (tell solve after, (instead of reverse advice), i
o o : mapc (append corpus reverse solution) (fancyprint clause x,

(SOLVE AFTER)

Now‘instead of merely printing out the solution, 1'll go

. * kD
through its solution and FANCYPRINT the result of applying CLAUSE 3

to each element on SOLUTION, I will aleo FANCYPRINT the corpus.

»

: , : . solve ((at pencil county))
L ‘ . : THE PENCIL IS IN THE DESK.
: ‘ THE DESK IS IN THE HOME.
THE HOME IS IN THE COUNTY. .
b : ‘ ~ IF ANY X IS IN ANY Y, ANY X IS AT ANY Y.
; ‘ Co ‘ ' AF ANY X IS IN ANY Y'AND ARY Y IS AT ANY Z, ANY X lS AT
. _ o NY 2.

L | o | IS THE PENCIL AT THE COUNTY Q.
, | S ‘ IF THE PENCIL IS IN ANY Y AND ANY Y IS AT THE COUNTY,
THE PENCIL IS AT THE COUNTY,

IS THE PENCIL IN ANY Y Q. ,

THE PENCIL 1S IN THE DESK.

25 r¥$ DESK IS AT THE COUNTY, THE PENCIL 1S AT THE
UNTY.

IS THE DESK AT THE COUNTY Q.
IF THE DESK IS IN ANY Y AND ANY Y IS AT THE COUNTY. TNE
DESK IS AT THE COUNTY.

1S THE DESK IN ANY Y Q.
THE DESK IS IN THE HOME.
IF THE HOME IS AT THE COUNTY, THE DESK IS AT THE COUNTY.

IS THE HOME AT THE COUNTY Q. !
IF THE MOME 1S IN THE COUNTY, THE HOME 1S Af THE COUNTY.

S e R 2

SR

FraEmes 1

LTI

O

Gy

* FANCYPRINT is a trivial function which prints a list, suppressing
initial and final parentheses without spacing before periocds,
commas, and colons, ;

80

T e e

D iAo

. 15 THE HOME IN THE COUNTY Q.
THE HOME IS IN THE COUNTY.
THE HOME IS AT THE COUNTY.
THE DESK IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.

© (21 FUNCTION CALLS)
((AT PENCIL COUNTY))

81

e

ROCENE LSRRI LS E NN P

e B

e Y AR e, AR S

B

e W oy 5

T il

ma“ches the list, HISTORY is described in Chapter 3} page 38.)

Endless Deductions

2 i e s TS

Now I am ready for the endless deJuct'on problem. (I am
now using a different corpus.) I instruct SOLUTIONI, before the

S
number advice, to search the HISTORY list and count the number

e et e oI AT

of times SOLUTION1l appears. If this is greater than 2, then quit «
don't enter SOLUTION1, ‘

{tell solutionl, (before number advice),

if (countf history ((solutionl $))) 1s greater than 2,
then quit)

(SOLUTION] BEFORE).

(COUNTF is a function that uses FLIP. It's inputs are a

'}
o
1
A
&
i
5
i
3
2
3
X

" 1ist and a pattern, and it counts the number of times the pattern

solve ({at pencil county))

. THE PENCIL 1S AT THE DESK.
THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY,

IF ANY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS 4
AT ANY Z. :
1S THE PENCIL AT THE COUNTY Q. §
AP THE PENCIL IS AT ANY Y AND ANY Y iS AT THE COUNTY, |
THE PENCIL IS AT THE COUNTY.
(8 FUNCTION CALLS)

CNIL

It didn't get far ehough to razach an answer., However, I

don't know how far it did get.

{solve : bind record to nil)
SOLVE :

1'11 set up another dummy variable, RECORD. What I would

1ike to do, before anything else, {s to save the arguments of

SOLUTION1 and SOLUTION2 on RECORD. 1If I just do this using TELL,

82

. the advice will be appended at the end of the list of advice.
* 1 nheed to be able to put something on the front of the list of
| advice. '

(translate (tell $1 (efther (first) (Sl / (atomz tirst))
%i; 3; {($ systemd 2 (» translate -1) (efther ({= normal))
{TR ANSLATE RULES)

Whenever I uie the word PIRST it will mean to call SYSTEM3
. | instead of SYSTEM1. '

(define system3 {what advice where) as
tf (get what ' advised) fs null, then (systeml uhat
advice where),
else (prog2 put cons 1f advice is atomic then advice,
else (cons ' advice advice) end get what where
what where, what))
{SYSTEM3)

SYSTEM3 will put the advice on the front.

& (solutionl first : save x on record)

" SOLUTION1

i Now 1 tell SOLUTION1 FIRST to save x on RECORD.
»

(solutfon2 first : save y on record)
" SOLUTION2 R

’ Bimilarly SOLUTION2,

{after solve : mapc (reverse racord) (fancyprint clause x))
SOLVE

‘and after SOLVE, to print R2CORD,

83

PRI

§

FREIVE R NN LI - SR Rt

5
3
3
1

T Y D e AT SN TNIEGIIE K GAP L 7, e rerpate s~ arggonre- LA R s
. " N i

o e o

e

o3 . R

o ST T RS

T e A

8 s I T AT TR e S P R e

|
i
!
H Now I repeat the question., I can see that the program-is i
§ on the right track. The last question it considered was "is é
f "the desk at any y.' If it deduces "the desk is at the home,” ﬁ
; , - oy
s . _and the home is at the county,” it will have deduced "the i
' % pencil is at the county.” 5
solve ((at pencil county)) ' ‘ \é
THE PENCIL IS AT THE DESK. b :
THE DESK IS AT THE HOME, o — .
S E " THE HOME IS AT THE COUNTY,
P ' - IF ANY X IS AT ANY Y AND ANY Y lS AT ANY Z, ANY X IS AT
' ’ ‘ KANY z. N ‘ “(, :
1S THE PENCIL AT THE COUNTY Q.' ‘ : ‘ F
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY. ¥
THE PENCIL IS AT THE COUNTY, 3
(8 FUNCTION CALLS)
1S THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY. Yis AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.
IS THE PENCIL AT ANY Y Q. .
THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z THE
PENCIL IS AT ANY Z. ‘
IS THE PENCIL AT ANY U Q. i
IF THE DESK IS AT THE COUNTY, THE PENCIL IS Af THE
COUNTY,
IS THE DESK AT THE COUNTY Q. i
IF THE DESK IS AT ANY Y AND ANY Y IS AT THE COUNTY, THE
DESK IS AT THE COUNTY. ‘ E
IS THE DESK AT ANY Y Q. i
KIL :

Since I am going to have to ﬁénipulaée the COUNTF parameter
now set at 2, I would like to give it to SOLVE as one of its
inputs.

(tell solve to bind n to (car x) and pop x)
SOLVE ,
84 N
— v ———————" . e Y N L R S R N AR e S R D R OR) Tl"’:.""‘!”?”m@ﬁ?f e ﬂ

I tell SOLVE to BIND N to the first element of x, which

g,

will be this number, and to reset x to the rest of x.

i

(change solutionl, (replace greaterp nl $1 with n))
(SOLUTIONY BEFORE)

‘replaue the '2" in GREATERP (countf something) 2, by N,

I could alno have saiz (REPLACE (COUNTF HISTORY ((SOLUTION1 $)))

AIS GREATER THAN 2 WITH (COUNTF HISTORY ((SOLUTIONY $)}) IS GREA1LER

Now try it with M set to 3.
\" '

solve ((3, at penci county))
THE PENCIL 1S AT THE DESK.
. THE DESK ~~ AT THE HOME.
THE HOME 13 AT THE COUNTY.
IF ANY X 1S AT ANY Y AND ANY Y 15 AT ANY I, ANY X IS AT

i ANY 7.

TR

s e ———

IS THE PeNCIL AT THE COUNTY Q.
1F THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNTY,

THE PENCIL 1S AT THE COUNTY.,

1S THE PENCIL AT ANY Y Q.

THE PENCIL IS AT THE DESK.

IF THE PENCIL IS AT ANY U AND ANY U lS AT ANY 2, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY U Q.
Y THE PENCIL 15 AT THE DESK.
C1F THE DESK 1S AT AKY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.

THE DESK IS AT THE HOME.

THE PENCIL IS AT THE HOME.

. IF THE HOME IS AT THE COUNTY, THE PENC!L IS AT THE

© . COURTY.

1S THE WOME AT THE COUNTY Q.

. THE HOME IS AT THE COUNTY.
THE PENCIL IS AT THE COUNTY.

(17 FUNCTION CALLS)

85

S ——e g

e T ER T

S T

e e gy

" with (AT PENCIL COUNTY)) to see how far I must allow it to run

PR CR
\

IS THE PENCIL AT THE COUNTY Q.
IF THE PENCIL IS AT ANY Y AND ANY Y IS AT THE COUNT
THE PENCIL IS AT THE COUNTY,

JS THE PENCIL AT ANY Y Q.
fHE PENCIL 1S AT THE DESK.

|
:
[F THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, TH‘
PENCIL IS AT ANY Z. : i

IS THE PENCIL AT ANY U Q.
THE PENCIL IS AT THE DESK

IF THE PENCIL IS AT ANY Y AND ANY Y IS AT ANY Z TH
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q.
1F THE DESK IS AT ANY Z THE PENCIL IS AT ANY 2.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.

IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE D
1S AT ANY U,

IS THE DESK AT ANY Y Q. .

THE PENCIL IS AT THE HOME,

IF THE HOME IS AT THE COUNTY, THE PENCIL IS AT THE
COUNTY.

i

SRR RLIPLEY - SN

IS THE HOME AT THE COUNTY Q. ,
THE HOME IS AT THE COUNTY, '
IF THL HOME IS AT ANY Y AND ANY Y IS AT THE COUNTY.3
HOME 1S5 AT THE COUNTY. !
THE PENCIL IS AT THE COUNTY.

IF THE DESK 1S AT THE COUNTY, THE PENCIL 1S AT THE ﬁ
COUNTY,

((AT PENCIL COUNTY))

The deductaun took 17 function calls, and it considered

(IS THE PENCIL AT ANY Y) 3 times. %

I also try the (AT PENCIL ¥Y) question (previcusly I was workingf

in order to produce all three answers.

86

e

e = mreme gt

S Tet® e e vl e e

.
YT e ht i ST s i faae

PR g e

solve ((

1, at pencil y))
THE PENCIL IS AT THE DESK.
" THE DESK IS AT THE HOME.
THE HOME IS AT THE COUNTY.
;:YAQY X IS AT ANY Y AND ANY Y IS AT ANY Z, ANY X IS AT

IS -THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.

(3 FUNCTION CALLS)

IS THE PENCIL AT ANY Y Q.
THE PENCIL IS AT THE DESK.
IF THE PENCIL 1S AT ANY U AND ANY U IS AT ANY Z, THE

PENCIL 1S AT ANY Z.

IS THE PENCIL AT ANY U Q.
((AT PENCIL DESK))

With N set to 1,'it got one answer - the desk.

solve ((2, at pencil y))

THE PENCIL 1S AT THE DESK.

THE DESK IS AT THE HOME.

THE HOME IS AT THE COUNTY. .)

z:vAgv X IS AT ANY Y AND ANY Y 1S AT ANY Z, ANY X IS AY

1S THE PENCIL AT ANY Y Q.
THE PERCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U 1S AT ANY Z, THE

PENCIL IS AT ANY Z.
1S THE PENCIL AT ANY U

. Q.
THE PENCIL IS AT THE DESK.

1f THE DESK IS AT ANY Z, THE PENCIL IS AT ANY 1.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME,
THE PENCIL IS AT THE HOME.

(11 FUNCTION CALLS)
IS THE PENCIL AT ANY Y

THE PENCIL IS.AT THE DEgK
IF THE PENCIL IS AT ANY U AND ARY U 1S AT ANY Z, THE

" PENCIL IS AT ANY Z,

IS THE PENCIL AT ANY U Q.
THE PENCIL 1S AT THE DESK
IF THE PENCIL IS AT ANY Y "AND ANY Y IS AT ANY Z, THE

PENCIL IS AT ARY Z,

IS THE PENCIL AT ANY Y Q.
IF THE DESK IS AT ANY 2, THE PENCIL '1S AT ANY Z,

87

S e o e AR

S

A s i e R A K

o e R B i e s A L et e SR e

et e

i A i S s 2 e e

1S THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK
IS AT ANY U,

‘1S THE DESK AT ANY Y Y Q.
THE PENCIL IS AT THE HOME,
((AT PENCIL HOME) (AT PENCIL DESK))

ez
SR

With N at 2, it also got the home.

TR

28 g, e v

solve ((3, at pencil y)) . K
THE PENCIL IS AT THE DESK. .%
THE DESK IS AT THE HOME. 1
THE MOME 1S AT THE COUNTY.
iF'AgY X IS AT ANY Y AND ANY ¥ IS AT ANY Z, ANY X IS AT

N .

. : IS THE PENCIL AT ANY Y Q.

. . THE PENCIL IS AT THE DESK.
IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE .
PENCIL IS AT ANY Z. ‘

1S THE PENCIL AT ANY U Q.

[' ' © THE PENCIL IS AT THE DESK.

A IF THE PENCIL IS AT AKY Y AND ANY Y IS AT ANY Z, THE
PENCIL IS AT ANY Z.

IS THE PENCIL AT ANY Y Q. ‘ 3
THE PENCIL IS AT THE DESK,
IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY Z.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME. :)
THE PENCIL 1S AT THE HOME,]
IF THE HOME IS AT ANY Z, THE PENCIL IS AT ANY 2.

IS THE HOME AT ANY Z Q.
THE HOME IS AT THE COUNTY.

IF THE HIME 15 AT ANY Y AND ANY Y xs AT Auv U, THE HOME 5
IS AT ANY U. 3

IS THE HOME AT ANY Y Q. '
THE PENCIL 1S AT THE COUNTY, . ’ ?
1F THE DESK IS AT ANY Z, THE PENCIL 1§ AT ANY Z. b

1S THE DESK AT ANY Z Q. 4
THE DESK 1S AT THE HOME. ¥
IF THE DESK IS AT ANY Y AND ANY Y IS5 A1 ANY U, THE DESK
IS AT ANY U.

IS THE DESK AT ANY Y Q.
THE DESK IS AT THE HOME.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U,

g
i
r:,.

t
£
E}‘

i

&

FP—

e e T ey S

e e o

88

D T C e Lt -~ W»mmﬂ% LT 2 et s

y

- o T

PASNERL, - L O TR e

1S THE HOME AT ANY U Q.
THE HOME IS AT THE COUNTY.
THE DESK IS AT THE COUNTY,

THE PENCIL IS AT
THE PENCIL IS AT

THE COUNTY.
THE HOME.

(39 FUNCTION CALLS)

IS THE PENCIL AT
THE PENCIL IS AT
IF THE PENCIL 1S
PENCIL IS AT ANY

15 THE PENCIL AT
THE PENCIL IS AT
I¥ THE PENCIL IS
PENCIL 1S AT ANY

1S THE PENCIL AT
THE PENCIL IS AT
IF THE PENCIL IS

. PENCIL IS AT ANY

IS THE PENCIL AT

ANY Y Q.
THE DESK

Z.

ANY U Q. ,

THE DESK. |

AT ANY Y AND ANY ¥ 1s AT anr 7, THE
z. _

ANY ¥ 0.
THE DESK,
AT ANY U AND ANY U IS AT ANY 2, THE

1.
ANY

u_q.
IF THE DESK IS AT ANY I, THE PENCIL 1S AT QNY 1.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
§F THE DESK IS AT ANY Y AND ANY ¥ IS AT ANY U, THE DESK

IS AT ANY U,

IS THE DESK AT ANY Y Q.
" THE PENCIL 1S AT
- IF THE HOME 15 AT ANY 2, THE PENCIL 1S AT ANY Z.

&
THE HOME.

1S THE HOME AT ANY 2 Q.
THE HOME IS AT THE COUNTY,

IF THE HOME 1S AT ANY Y AND ANY Y IS AT ANY U, THE WOME |

IS AT ANY U,

(1
t

1S THE HOME AT AKRY Y Q.
THE HOME 1S AT THE COUNTY.

IF THE MOME IS AT ANY U AND ANY U 1S AT ANY Z, 1HE HOME f

IS AT ANY Z,

1S THE HOME AT ANY
IF THE COUNTY IS

1S THE COUNTY AT
I¥ THE COUNTY 1S

. COUNTY IS AT ANY

1S THE COUNTY AT
THE PENCIL IS AT

YyuaQq.
AT ANY U, THE HOME I5 AT ANY U,

ANY U Q.
AT ANY Y AND ANY Y IS AT ANY 2, THE

.

ANY Y Q.
THE COUNTY,

IF THE DESK IS AT ANY Z, THE PENCIL IS AT ANY 7.

IS THE DESK AT ANY Z Q.
THE DESK IS AT THE HOME.
IF THE DESX IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK

IS AT ANY U,

89

AT ANY U AND ANY U IS Af ANY 2, THE

s 3

RS WS IEN |

ol Al eIt D e Wi i S,

G ke e e T ALy

[

4

N

£ T N T AN TR K B3 K ey

om0

: 1S THE DESK AT ANY ¥ Q.

¢ THE DESK IS AT THE HOME.

y IF THE DESK IS AT ANY U AND ANY U IS AT ANY Z, THE DESK
; 1S AT ANY Z.

. : . IS THE DESK AT ANY U Q. ’
T IF THE HOME IS AT ANY U, THE DESK IS AT ANY U,

1S THE HOME AT ANY U 3., .
THE HOME IS AT THE COUNTY. :

IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY Z, THE HOME
1S AT ARNY Z. s) .

. : T : : S
1S THE HOME AT ANY VY Q.
THE DESK IS AT THE COUNTY,
THE PENCIL 1S AT THE COUNTY.
THE PENCIL IS AT THE HOME.

((AT PENCIL HCME) (AT PENCIL COUNTY) (AT PENCIL COUNTY) (AT
PENCIL DESK))

S ¢ g ey s T e T ¢ SIS R

With N at 3, it got the county, as it should, but it took

R

39 function calls, because it kept reconsidering the same ques-

tions until it ran out of room. Only then did it abandon this

oA R LT

question and proceed to the next one.

R

What I really want to do is note when a question repeats ana take
the answers found so far. 1 can do this because HISTORY is
available and 1 can lcok back on it and find VAL, which has all

-of the answers bound to it.

T LR

. . - Instead of the countf -~dvice, I will use a FLIP rule which
will look for SOLUTION1 on the HISTORY list, provided its argue-

ment x, matches the current x, In this case, it will return

:
5
i
3

with the value of VAL.

11 solutionl, (instead of countf advice), (f11pl history

solution] «) (val =) {x § / {matches (= x))}) -)
1t 3 2))) history))
UTION] BEFORE)

ft

~

e
{((
SO

-

- {define matches (x y)} as
(o : if x 1s nuli, then y i¢ null,
; 1f (car x) is equal to (car y) or
(variable car x) and (variable car y),
then (matches cdr x c¢dr y)}
(MATCHES)

90

#hbstitution_of variables.

mEErEac . aas «

(change solve, (delete n (backto advice) upl))

(SOLVE BEFORE)

solve ({at pencil

))

THE PENCIL IS AT THE DESK.
"THE DESK IS AT THE HOME.

ANY 2.

* THE MOME IS AT THE COUNTY.
IF ANY X IS AT ANY Y AND ANY Y lS AT ANY Z, ANY X IS AT

1S THE PENCIL AT ANY Y Q.
THE PENCIL 1S AT THE DESK.

IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z,

PENCIL IS AT ANY Z.

IF THE DESK IS

. IS THE DESK AT

THE DESK S AT
IF THE DESK IS
IS AT ANY U,

IS THE DESK AT
IF THE HOME 1S

IS THE HOME AT
TME MOME IS AT
IF THE HOME IS
1S AT ANY Z.

- THE DESK IS AT
THE PENCIL IS AT THE COUNTY,

IS THE PENCIL AT ANY U Q.
AT ANY 2, THE PENCIL IS AT ANY Z.

ANY Z Q.
THE HOME.

AT ANY Y AND ANY-Y IS AT ANY U, THE DESK

ANY Y

AT ANY U, THE DESK IS AT ANY U.

ARY U Q.
THE COUNTY,

AT AKY Y AND ANY Y IS AT ANY 2, THE HOME
THE COUNTY. . '

THE PENCIL IS AT THE HGME.

(17 FUNKCTION CA'LS)

1S THE PENCIL AT AKY ¥ Q.
THE PENCIL IS AT THE DESK.

IF THE PENCIL IS AT ANY U AND ANY U IS AT ANY Z, THE

PENCIL IS AT ANY Z,

IS THE DESK AT
THE DESK IS AT

IF THE DESK IS AT ANY Y AND ANY Y IS AT ANY U, THE DESK

IS AT ANY U,

~ IS THE PENCIL AT AKY U g@.
IF THE DESK IS AT ANY 2, THE PENCIL IS AT ANY “Z,

ANY Z Q.
THE HOME,

91

I don't need the advice concerning N.

. Two questions will match if they are identical except for
Black's function VARIABLE is true

L £ ité}inpnt is the aamc of a variable, e.g., X, ¥, U, V, etc. R

k. LI

R A

e R B e A TR B i s L

SRS R

EEECWESE

G R ————— TV

e

phox s i Sia e s s e e i

7

e g ke e,

IS THE DESK AT ANY ¥ Q.
IF THE HOME IS AT ANY U, THE DESK IS AT ANY U.

IS THE HOME AT AN~ U Q.
THE HOME IS AT THE COUNTY.

 IF THE HOME IS AT ANY Y AND ANY Y IS AT ANY Z, THE HOME
IS AT ANY Z.

IS THE HOME AT ANY Y Q. }
IF THE COUNTY IS AT ANY Z, THE HOME IS AT ANY Z. :

IS THE COUNTY AT ANY Z Q. n , L
IF ThE COUNTY IS AT ANY Y AND ANY Y IS AT ANY U, THE _
COUNTY IS AT ANY U. SR : :

IS THE COUNTY AT ANY Y Q.

THE DESK IS AT THE COUNTY.

-THE PENCIL 1S AT THE COUNTY, -

THE PENCIL IS AT THE HOME.
((AT PENCIL HOME) (AT PENCIL COUNTY) (AT PENCIL DESK))

Now the deduction requires only 17 function calls, and

looks reasonable!

92

SR T - Y

A
1
A L e &
5 » D
N ;
!) , 4 j y
. CHAPTER 6 ‘ "
EXPERIMENIS WITH A PROBLEM SOLVER ;
‘The central aim of the General Problem Solver of Newell,' - " i
Simon and Shawlaal was to divorce problem solving techniques X ﬁ
" and heuristics‘trom any task environment, and thus construct bﬁ
& program that was truly general, A system was constructed that 3
’ succeeded in proving theorems in logic, and solving problems ' ﬁ
 ‘auch as the cannibal and missionary yroblem. However, the i
‘Isystem grew so massive and cumbersome, and the effort anolved‘”, -
in making modifications so enormous, that it has become more)
‘or less frozen. (Newell has informed me that after some time) R
‘ away from the program, it takes him weeks just to.'get into the
ﬁ" 1isting® and remember what the program does.) N S D I
g 1 thought it might be worthwhile to use PILOT to construct . @
‘& a system with the same goals as GPS, i.e., flexibility and _ ‘ E
i generality, although not as complex. 1 started with a minimal S ‘ E v 'f
i configuration and used PILOT to make modifications as I went ‘ . ‘ ' f
along. In this way I did not give much forethought to the de- . ‘: S . ;
. sign of the system, but allowed it to develop as the experi- P B L @
;ﬁA mentation proceeded., The next section summarizes what happened, . | t
[: ‘ ' v
éﬁ and the following section contains a protocol which is an i
| ‘ ' S ‘
g; extract from my sessions at the console. ‘ o o
e . :
i
I :
i,
93

e U p—— et

et ey e Lo

Summary of Experlments

The basic design of the system is illustrated in the accom-

panying flow chart. -1 implemented this flow chart by dividing

the various tasks among five functions,”'hus facilitating'makiﬁg f

eman -

subsequent changes wifh advice. These functxons are MOVES,
GOALP, GPS, MAKE, AND PROGRESS. MOVES genexates a list of moves
;‘ ‘ L S %‘] - for any given situation. GOALP ;ecognizes when tne'problem>has
R ‘) } ‘been solved. The main loop of the program is GPS--MAKE~~ 3
PROGRESS—-GPs; GPS‘ is the executive routine which'calls MOVFS, ;
selects the first méve on the list of possible moves, and calls
MAKE, MAKE makes the move, i.e., performs the necessary changes !
in the ptoblem representation, and calls PROGRBB:.AVDROGRESJ
checks whether the problem has been solved by call;ng GOALP,

and if not, calls GPS with the new position.

£ ' C ' The first problem 1l attempted to solve with theysystem was
{ o : ‘

the cannibal and missionary problem. 1In this ﬁroblem, three‘

cannibals and three missionaries are on one side of a river with

% : S a boat that can carry only two men. The object is to transport
v ’ ‘

[P AT

everyone across the river. The catch is that if there are

more cannibals than missiovnaries on any side at any time, the
;.f S ' - cannibals will eat thc missionaries. This is undesirable. It !
is also assumed that the boat will not float across the river

' by itself, i.e., someone has to he in it to take it across.

1 set up the problem using four variables: SIDEl, SIDE2,

FROM, and TO. SIDE1l would represent the contingent on the near

side of the river, and SIDE2 those on thé faf side. FROM and

* I hope Messrs. Newell, Simon, and Shaw will forgive me for . §
naming my program after theirs.

; 94

e ey

D

Gl e S S

. |THIS SITUATION

GENERATE
MOVES FOR

. LTIl

MAKE NEXT
MOVE

PROBLEM
SOLVED

95

| REPORT
FAILURE

DONE

&‘] PR L PR .
-

K i asndeasn e 2]

1 er Ty SRR Y0 S NS T

. Am e b

T T A L e e S ST T T 3 37 gt

TO would represent the direceion of transfet; ii. other words,
the location of the boat. I advised GOALP ef the tetminel con=- ;
ditions, and told MOVES to return with MOVE; and MOVE2, cqtres-&
ponding to moving llperson and 2 people. .(i had te define the é
‘ operation of moving appropriately.) T then advised MAKE to %
make the appropriate changes in FROM, TO, SID"I, and SIDE2, and
instructed PROGRESS to quit if the cannibals outnumbered the
missionaries. The only thinq zemain;nq was tn ensure that GPS ;

did not loop, i.2., send a cannibal across, bring him back, send

" him acrose, bring him kack, etc. 1 advised GPS ’o avoid looplng

R T T AL T YRR Y ML L S
2

reorr e

o A

A g e T

e e e A e AT

e evmes eny

by saving the positions encountered, searching thin list of '
‘positions, and terminating a branch when a position repeated.

w1th this set of advice, GPS solved the problen.vﬁ S ‘; M

Unfortunately, as one can see'fromvthe,iﬁtcgaction shown
below, solving the pfoblem.simply meant that:ten seconds efter
input,GPS printed *T*, indicating the problem had ﬁeen solved.
This was not very informative. Therefore, modified the prograa
to count the number of moves it considered, and to print tle
solution. At this stage, I decided to see if I could get a

nice English output,

I defined a function PLURAL, which took the plural of ~'q
nouns, and by ‘advice, enabled it to handle the plu:ale of words E
like both CANNIBAL and MISSIONARY - drop the"y‘ and add "i e s,3
etc. . I defined a function PHRASE, which took a list of the form
(CMC MM, C standing for CANNIBAL and M for MISSIONARY,‘and 1

produced (TWO CANNIBALS AND THREE MISSIONARIES). (This was :
' necessary because there was. no guarantee that the representation
would be sorted, and indeed it usually wasn't.) When 1 got

PHRASE work® .3, I had the program print the solution and then

96

¥
o

o
r ; .
zdded & tacility to have i* print out each move considered.

gince nothinq was built into the program to distinguish one
éavnibal from anothex (KOVEI simply meant take 1 person and move

Y, the pxog:am would attempt to send‘across one cannibal, then
'io bzing him back - that then being the only legal move - realize

Lhat it waa back where it startod, abandon this line of attack,

B
hnd genetate as its next move, sending across the next cannibal,

) ;tc.‘ It was obvious that heutistics were needed.
i

- As a tirst heuristxc I tolu GPS that if it was trying to

fgagiass

hend people across, i.e., going FROM SIDElL and TO SIDE2, then

lt :hould try to send as many men as possible, i.e., to consider
Loving 2 before moving 1. This was to avoia fruitless consider-

htiona of trvinq to send each one of the original six people

hcro.s before tzyinq combinations vf two. This heuristic reduced

the number of moves attempted from 68 to 35 I then added a
fecond heuristic which had the effect of making the program
&Ealize that once it had tried sending across a particular boat-
ﬁoad;.and failed, it should not try the same move again. This
}educéd the number of moves considered to 20. The length of the

sclution in each case was 11 moves, which is the minimum number

requireo.
, JSLgce GPé waa,:uﬁposed to be a general problem solving
Igfog:aﬁ, i n6w'asked‘it to solvé the fox, goose, and corn problem.
tln this pzoblem. a farmer wants to carry a fox, & goose, and

‘ucme corn to the barn, but can't leave the fox alene with the

,qoose or the qoose alone with the corn. In addition, he can

“only carry one object at a time.

97

¢
!
v
£
{
i
I
i
b

e

s ik A o

et 4 o

e SEeRT,

et

et 4k

R

TRl

Since this problem was similar to the cannibal and mission-

ary problem, 1 was able to carry over much of the advice alréady}’

given to GPS, GOALP, MOVES, MAKE, and PROGRESS, making only a

few modifications. GPS then solved the problem,

Professor Minsky suggested thgt I try the caqnibél and
ﬁissiénary problem again, this time with a boat that could
carry three people. This modification turned out to be easy .
to achieve by advising MOVES. GPS only considered 12 moves

to find the solution, now requiring only five moves,

I decided I would now like to be able to‘solve the problem
using the number of missionaries and cannibals as input para-
meters. I mouifiecd PROGRESS, changing the advice that checked
on the missionaries' safety to work with any size population.

I then gave the program the problem with 4 missiénaries and
4 cannibals, which can't be solved with a two man boat, as
the program discoveren, This problem cin be solved with a
larger boat,and the program found solution for the modi fied
problem, o | 1

i
b

I decided I would like to sp%cify the size of the boat as

an input parameter also. After doing this, I asked the program
to SOLVE (CANNIBAL AND MISSIONARY PROBLEM FOR 3 IN A BOAT AND
FOR 4 CANNIBALS AND 5 MISSIONARIES).

At this ppint, the program ran out of space, primarily be-
cause 1 had, resident in core, all of FLIP, the SYSTEM functions,
and the EDIT package, in addition to tte problem solving program.
I made room by removing the EDIT functions and contiﬁued to a

solution of the problem. When I finished, I enabled the system

98

e o <

SRR PN R M

o Er A Ta Meaniei

SSTVER

ET

T e e
~

{to make room in the future when it required it, by telling the

e
. system whenever there were less than 500 words of free storage
GPS then solved

{ left, to remove the least essential package.

‘4 number of other problems.

I made two more interesting modifications to the program.

' First, I advised it how to solve (HOW BIG A BOAT DO YOU NEED FOR

. 4 CANNIBALS AND 4 MISSIONARIES). This was a change conceptually

simple, since it only involved GPS calling itself with different
‘However, 1 made a

" size boats until one was found that worked,

more sophisticated revision that involved a problem in which some

- of the missionary population might not be eaten by cannibals,

. even though outnumbered. 1 called such a missionary TARZAN,

and asked the system tc solve problems such as (HOW BIG A BCAT
DO YOU NEED FOR 3 MISSIONARI:S, 1 TARZAN, 4 CANNIBALS) -~ answer 2.

Protocol

(define gps as prog (x y)

setq x moves
gt i1t x 1s null then (return nil} end

setq y valueof car x
g2 1f is null then {go 93),
if (make car y) then (return t) end

pop y -
go g2
93 pop @
(GPS{
This is the definition of GPS. GPS calls MOVES which re-
turns with a list of the move types, not the moves themselves.
GPS then computes all of the moves corresponding to a particular

type, and runs through them calling MAKE on each one.

99

L w———

LN PR A)

A T e SR T i e B

e e B O R

S
g
B :;
b
¢
k)

s e e R 13 s

e 2 AT

P

e s R, T3,

Qe TR TR

o I

i

e

T e S S S R T AR

e

{define moves as)
{MOVES)

(define make (move) as progress)
(MAKE)

(define progress as goalp or gps)
(PROGRESS)

(define goalp as)
{6oALP)” -

bDefinition of MOVES, MAKE, PROGRESS, GOALP. MOVES and GOALP

are defined as nothing =~ which means they return NIL. MAKE is

a function of one variable - its name being MOVE.

(define solve (fexpr) as
if (get ' start csetq normal car 1) is null,
then '(dont know how),

i1f (csetq history list cons ' solve 1) then (start nil))

(SOLVE)

SOLVE takes the statement of the problem and determines

whether the problem can be solved. It looks on the property

list of START for advice on this problem. (Problems are labeled

by the first word in the statement, for example CANNIBAL.) If
there is none, SOLVE returns (DONT KNOW HOW). Otherwise it
'calls START to begin solving the problem. SOLVE also sets the
NORMAL mode to the problem name so that further advice is inter-
preted in the context of this problem; S

{define start (hist) as gps)
(START)

START performs the initialization and calls GPS. START.

hais one variable, HIST, which may be used for saving informa-

tion to be printed out at the end.

100

e i i RS S 55

i Tt 3 T Dmenb e & et et b

o a5 i B s Bl 0

e o R a0

(S e N

A
e S5

§ince I would like to use the same program for several R -)]

‘different problems, I will prepate for different entrance points . o w;/

258 S S st T 2

o

féorrespoqdinq to the various problems. This is done by placing

g

'a computation which will produce the advice at " canonical
:entry point labeled BEFORE, instead of the actual list of advice. » . ‘ o o C
'This {s the role of the function SETUP. - . S A

ﬂf‘: (define setup (x) as mapc x {nconc x 1ist ® before
‘ ilambda (y) (get (caadr y) normal))))

SETUP places under‘the property BEFORE, the S-expression ‘}“

TR e

(LAMBDA (X} (GET (CAADR Y) NORMAL)}, which is evaluated by

pADVISE. This will get tine list of advice from the correct pro- f ‘ C : ‘ f
%pertyJ As described in Chapter 3, the input to this LAMBDA -
cxpressxon is the HISTORY list, and CAADR of the HISTORY list

‘is always the name of the function just entered.

% sﬁtup ({gps moves make progress goalp start)) ' ' 'f' 12
5{ IL . , o :
ﬁ | translate (start with $1.:$1 (repeat $1 81)) as - d
b tell start to bind 3 to ($* guote ; - » : ;
i repeat n and bind 1 to ($* quote 2) and nil)) L ;
I (TRANSLATE RULES) E
(|

This rule causes instructions of the form (5§ART WITH

uuu vv% XXX YYY ...} to be transformed into advice for START

thich will per form the appropriate opetation of binding uuu to A
?vvv, jxx to yyy, etc. .This advice corresponds to the initial- 4) : “f
?1zat1qn process. _ : : » ‘%
L

!

101 :
|
|

ﬁWWWW- baniian, 2 o S an ~ [P it ‘\‘-‘ N e mmm

e A T A T T LR

o R R

I now try to SOLVE (CANNIBAL AND MISSIONARIES) and GPS
resvonds (DONT KNOW HOW) because under the propert} CANNIBAL
on the property list of START there is no advice « yet.» NORMAL
is set to CANNIBAL.

solve (cannibal and missionaries)
(DONT KNOW HOW)

(start with sidel (mmmc¢ ¢ ¢), side2 nil. to side2,
from sidel) o
START -

Start with sidel (mmmc ¢ ¢), go to side2 from sidel.

(tell gecalp, return with sidel is nu1i)
GOALP

Final condition ~ no one left on sidel.

(tell moves, return with '{(movel) (move2)))
MOYES

Moves.

(define movel as allitran valueof from '(Sl) ((2) 1 3))
. MOVEI)

MOVEl goes through VALUEOF FROM and makes a list containing
a move corresponding to every single element on FROM, In other

words, if FROM is SIDEl, and SIDEl is (M C M C), then the value

it e e e S

FERIRAEAS SUPPIO RN PN

of MOVEl as ((M) CMC), ((C) MM C), ((M) MCC), ((C) Mcm).f

Each member corresponds %o a move, namely the one in which the
first item is moved, leaving the rest. MOVEl is easily defined
using a FLIP function ALLTRAN, ALLTRAN yields all possible

102

s
K
HAE

'

e e .‘,- u;-‘ e b

e

?t:anatormations on a list with a given pattern and format.

di;izi moveZ);s llltran va1ueof from '(Sl S Sl)
novsz) ‘

MOVE2 is similar to MOVEl. For (M C M C), it returns

e wen.

W N

o

(te)) make, to (y) (setq y fromz and bind {valueof
' from) to (cdr move) and bind (valueof ' to) to
{append car move valueof to) and bind from to to and
b;xdzto to y)

K

I now tell MAKE to switch FROM and TO and make the appro-

priate changes on the sides.

(tell progress, if ‘' m is a member of sidel and * m
is a member of side2 and (countq sidel * m) s not
equal to (countq sidel *' ¢}, then quit)

PROGRESS

This gives the éat;ng‘conditions to ¥AOGRESS. It is not

' sufficient to simply count and compare, ba ause when all of the

?cannibals are on one side with no miasion ies, they do out-

I,
i

_ .number the missionaries 3 to 0. However.

obody gets eaten.

1_

(

g : save (cons from side2) on hist)

ps
PS

This saves the value of FROM and the value of SIDE2 on HIST.

This is sufficient to identify the position. It is not enough

to save only the value of SIDE2, or SIDE1l, because there may be

103

v
[y

(((M C) MC), ((MM) CO), LIMC) C M). ((C M) M C). Jdeeymm, o

3
i

‘

3
i
i
v
b

o an .
s PASAS B e kL

55 b

T Y

-

ime ar e hta edye

R T SRR AR pEmt T T

a pointAin the solution in which the position is repeaéed with
respect to the values of SIDEl and SIDE2, but the boat is on
a.different side. .

© ATwme cmmmes cmen e -

{after gps : pop hist)
. &PS ’
After leaving GPS, I have to pop hist;

tell progress, if searchf hist (((= from) $§ /
setequal (= side2)))) then quit)
PROGRESS - k

This aévice Eells progreés to search through HIST loouking
for an e}emént whosevfirst member is equa1‘£o the value of'FROM,
‘and the restAof which is equal, in the set terminology sense,
to the value of SIDE2. We must use set gquality becéuse the

representation may have become rearranged.

'so;ve {(cannibal and missfonaries)'
AT®] .

Now it can solve the problem,

unfortunately, GPS gives me little information about what

... 1t did, so 1 set up two more variables, NUMBER, and SOLUTION.

{start with number 0, solution nil)
START

(make : fncrement number)
MAKE

At MAKE, 1 increment number.

104

a :
'y

" ’ : é

N . fﬁ
.’!“ 4
¢) : o
3 . (after goalp : if value then (setq soluticn history))

' GOALP ‘

?]5‘ After GOALP, if its value is not NIL, which means the |
iangweg has been found, I save the HISTORY list on SOLUTION. v
o “(after start : if value {s not equal to ‘(dont inow - R L SR ~@
i hg;&irthen (printred cons number °‘(moves considered))) RPN : ' ‘ P TP

When I get back to STAR?, if the value is not (DONT KNOW

ﬁhow).'x print the number of moves considered, , i o _3‘ ' B s

f reverse solution L ‘ ‘ S
11) (print %)) R T A o T

e
e

i

and & summary of what they were. He== { use another FLIP o : o g

¢ :
:function LISTF, to look through the HISTORY list and make a list y
Lo, o “
fof a1l of the bindings of the variable MOVE (which is the name B
B ‘ : y . g i
‘of the argument of MAKE). . . S ‘ , AP

1

"solve (cannibal and missionaries)
- (68 MOVES CONSIDERED)
MC)MMCC)

c

105

. e I TN A I Sty + R R LTI B & N e = o e T g s atrapoguproge- 0,58 = FATTR e e wrO—t]
:) . " . !

SPCESES NG TSR ARIN EPNCY 2P

This is the solution. The first move was to tak: a mission-
i - ary and a cannibal across, leaving two missionaries and two
: cannibals on the near side. Then a missionary came back leaving

a lone cannibal on the far side. Next two cannibals went actbss}'¢

Ty L 0 T 4 T

etCe - - o e =t

PN . x, B

£ T e g T TS SN (LT

.

H . = ‘

o :

i :

2 , :

b ;

3 &

¥ \ :

B ' ;

/. i

R !

fr B

; :

‘ i
1

0 ;

i 3

L) :

‘ p

£, :

:

i

X

j .

;

i (o

k4

t

i

A

106

y . N Pl e .
. ST M SRR P L R |
v..L,«._—- o e WV A A T a6 V8 WAL LIRS R AL WL 8 S e e 5 S Nl el S~ o PR g * cammatl -

‘ English Output v
{define plurall (x y) as grog3 clearbuff

o magc {append x y) (pack x), intern mknam)
SN , LURALL) ; .
PLURALI 1s a function which takes its two arguments and

makes one uord out of them.

g (define lura] (x) as plurall explode x '(s))
i (PLUR g ‘

g _PLURAL calls PLURAL1 with its input and ®(s)." Thus
{ PLURAL (CANNIBAL) 1S CANNIBALS. |
Q ptural {cannibal)

CANNIBALS

. plural {(missionary)

; MISSIONARYS

;i‘ (plurail : 1f (last x) 1s equal to '{y)
S then to {(rlast x) and (setq y '(i e s‘)f

3 PLURAL1L

Telling PLURALI if the last letter is a "y," is should

2 RLAST. remove the last letter, and usé "1 E 5" instead of "S. .

o S
% . plural {missionary)
i 'MISSIONARIES

Now it works correctly{

ﬁ
A

+

v

1in s e N R L

#
I
i
IN
s
i
N h
5 :
; i
; b
j ¥
5 “
- i
¢
P
” ;
3
L
L . Cam Ry .
-~ PR - . g ""“‘“"WA,
4
4
Ve P ALY N A S IS 9 o 5 LA N K20 Al 25 35 P b el 5. A T 5084% 3 RSNt o 0 4 RSB N N

Rk i

¥ ‘/# ;
b v .
% (define phrase (x y) as if x 1s null, then '(nobody),
else (transform sublis y x '(
({-- $1 7 (atom) (repeat § (/t 2;; ;
. (-- & (repeat 1) {{(= (car n op)
N , o ggrgggag)g(either ({= 1) $1) (L= 2) Sl) ((=3) $1) »
: i B ;r*~w»#<'ﬂ“ -f{repeat (efther (/c 1 1) (a 2) (two (= plural 2))
A k ¥ o ' | i (three (= plural 2)}) (1 (- plural 2))) .
AR , ’) i : : (= comna)})) : i
TR IR , ; S ' {252 $1) (1) exit e . 2
‘i : s $2 $1 32 $1 (1 and 3) exit) - i
b . (((back 3) $2 $§1) (1 and 2)))}) £
- R (PRRASE) C B
4 :

PHRASE sorts the people on a side, substituting their proper
names, i.e., vannibal for "c” and missionary for "m,” and then :
makes a nice éhrase out of it,

I test PHRASE.

£ phrase {{(c) ((c . cannibal)))}
o : . . : ‘ o (A CANNIBAL; ’ !
R , \ phrase ({(c m) ({c . cannibal) {m . missionary)))
L T {A CANNIBAL AND A MISSIONARY)
S . : phrase ({c m ¢ mm) {{(c . cannibal) (m . missionary)))
El : ' {TWO (CANHIBAL)S AND THREE (HISSIONARY)S)
2 A Bug, because I have extra parentheses.
gi {plural : if x §s not atomic, then {setq x car x))
PLURAL :
3 3 ‘ . ' : - Fix the BUG
phrase ((c m ¢ m m) ({c . cannibal) {(m . ‘missionary)))
(TWO CANNIBALS AND THREE MISSIONARIES;
phrase ({(emecmmm) ((c . cannibal) (m . missionary)
: {1 . Ytom)))

(TWO CANNIBALS , 4 MISSIONARIES , AND A LION)

T R IR TR et

and it works correctly.

v BT A TSP

108

PO T NN
s © Sy P g o U™ S ATOE R G PULSBL TEE AR OP G N o At e e ¢ oho R tuae: e e -l WM .

(tell start after, (instead of listf advice),
; ‘ if value and (cadr solve) is equal to ' and, then
b © (fancyprint listf reverse solution '((move (s $) $
: {etther ({from . sidel)) ((from . side2)))).
, . ‘(bring (** (= phrase (/t 2 2 1) (= a)))
2 ‘ (eftther (back) (across)) (= comma) leaving ‘ ‘ . .
{*' {= phrase (/t 2 3) (= a))) o ‘ : U
‘ either (side2) (sidel)) (= period, (= cr) (= cr)) ‘ ' g
a {c . cannibal) (m . missfonary))) }) L o) A
‘ START AFTER)) L B S oL

NN SRS TP

‘i I replace the LISTF advice with advice for preducing fancy

‘output. The result is showr below.

- solve (cannibal and missionaries)
{68 MOVES CONSIDERED) B . B

i : BRING A HISSIONARY AND A CANNIBAL ACROSS, LEAVING TWO
’ - MISSIONARIES AND TWO CANNIBALS ON SIDE:.

BRING A MISSIONARY BACK, LEAVING A CANNIBAL ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING THREE MISSIONARIES
ON SIDEL. :

BRING A CANN!BAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

! BRING TWO0 HISSIONARx.S ACROSS, LEAVING A CANNIBAL AND
Lo -~ A MISSIONARY ON SIDEIL.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING A
MISSIONARY AND A CANNIBAL ON SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
 ON SIDEL.

g: : - : 8§ING A CANNIBAL BACK, LEAVING THREE HISSIONARIES oN
B : SIDE2 :

g?ING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL ON B . . - i
DE1. : o

BRING A CANNIBAL BACK, LEAVING A CANNIBAL AND THREE
MISSIONARIES ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING NOBODY ON S1DEL. ‘l;f.:

e e Xems .

T

SRR % el

109

PG Atas SET PN , b e ———

. . . !
B TG) L R DN L LAY | Y e iy, A LA MR Sl s 5 % L9 i s T T TR R L R el e el Ry e T PRE S ST

 ppe

ceEe

i e

e g

B I E

In order to evaluate new heuristics, I also need a facility
for printing each move as it is considered.

so that if the word "PROBLEM" appears in the input, MAKE will

print each move in

(make :
(fancyp
move az

(

fr
sidel
side?

r
)
$
)

[}
:.. - 3%

fsAv: — e e

MAx:

solve {ca
BRING A
SIDEL:
SIDE2:

BRING A
SIDEL:
SIDEZ:

BRING A
SIDEL:
SIDER2:

BRING A
SIDEL:
SIDEZ:

BRING A
SIDEL:
SIDE2:

BRING A
SIDEL:
SIDE2:

BRING A
SIDEIL:
SIDE2:

BRING A
SIDEL:
SIDEZ:

BRING A
SIDE1:
SIDE2:

a nice format.

]

f ' problem is a member of solve, .then

nt constructl nil *(bring (** (= (phrase car
bz s 'g(sidel !back) {side2 ., across))

* (s {phrase 'sidel a))) (= ¢cr)

** (= {phrase sfde2 d))) (= cr) (= cr))

s '(a (¢ . cannibal) (m . missionary)) history))

nnibal problem)

MISSIONARY ACROSS

TWO MISSIONARIES AND THREE CANNIBALS
A MISSIONARY

MISSIONARY ACRQSS
TWO MISSIONARIES ANU THREE CANNIBALS
A MISSIONARY

MISSIONARY ACROSS
TWO MISSICNARIES AND THREE CANNIBALS

A MISSIONARY

CANNIBAL ACROSS
THREE MISSIONARIES AND TWO CANNIBALS
A CANNIBAL |

|'l

CANNIBAL BACK
THREE CANNIBALS AND THREE MISSIONARIES
NORODY -

CANNIBAL ACROSS
THREE MISSIONARIES AND TWO CANNIBALS
A CANNIBAL

CANNIBAL BACK
THREE CANNIBALS AND THREE MISSIONARIES
NOBODY

CANNIBAL ACROSS
THREE MISSIONARIES AND TWO CANNIBALS
A CANNIBAL

CANNIBAL BACK
THREE CANNIBALS AND THREE MISSIONARIES
NOBODY

]

110

I will modify MAKE,

E L St AP i e

BRING TWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY AND THREE CANNIBALS
SIDE2: TWO MISSIONARIES

BRING TWO MISSIONARIES ACROSS
SIDE1: A MISSIONARY ANU THREE CANNIBALS
SIDE2: TWO MISSIONARIES

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDE1: TWO MISSIONARIES AND TWO CANNIBALS
SIDE2: A MISSIONARY ANu A CANNIBAL

etc.

These are the first 12 moves considered. Note that the
program does not assume that any one missionary is different

fiom any other.

The first heuristic is to try MOVEZ before MOVEl, when the
boat is going across the river, but keep MOVEl first when coming

1 instruct MOVES to reverge its value if TO is equal to

{tell moves after, if to is equal to ' side?, then

© peturn with {reverse value))

MOVES

solve (cannibal)
{35 MOVES CONSIDERED)

*Tw

Now the number of moves is reduced to 35. The next heur-
istic is to save the moves considered at each ply, and not attempt '
one which is SETEQUAL to a move considered before. SETEQUAL

nust be used because the move (M C) should eliminate {(C M).

: bind moves to ntl)

{gps
6PS

m

R T e L I b A

x?

ECON SER S-S PN A E N P VeSS TN SO

A dal

w xn e g

e e N ew ettt B

Setting up the dummy variable MOVES.

(tell make first, if searchp moves (setequal (car
move)), then quit, else do save (car move) on moves)

MAKE

Telling MAKE, FIRST, to search MOVES, and if it finds
something which is SETEQUAL to (CAR MOVE), then quit. Otherwise,

save (CAR MOVE). This cuts the solution down to 20 moves, re-

produced here in full.

T T L T R SR T M I ey, w e e T

- SIDE2: THREE CANNIBALS _

solve (cannibal and missionary problem)

BRING TWO MISSIONARIES ACROSS
SIDEL1: A MISSIGNARY AND THREE 'CANNIBALS

SIDE2: TWO MISSIONARIES

BRING A MISSIONARY AND A CARNIBAL ACROSS
SIDEI: TWO MISSIONARIES AND TWO CANNIBALS
SIDE2: A MISSIONARY AND A CANNIBAL ‘

BRING A MISSIONARY BACK 2
SIDEl: THREE MISSIONARIES AND TWO CANNIBALS
SIDE2: A CANNIBAL ;

BRING TWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY AND TWO CANNIBALS
SIDEZ: TWO MISSIONARIES AND A CANNIBAL

BRING A MISSIONARY AND A CANNIBAL ACROSS
SIDEl: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWQ CANNIBALS

BRING TWO CANNIBALS ACROSS
SIDEl: THREE MISSIONARIES

'
i S S i e A B AL i M g i AR

S ISR

BRING A CANNIBAL BACK
SIDEl: A CANNIBAL AND THREE HISSIONARIES
SIDEZ2: TWO CANNIBALS

BRING A CANMNIBAL AND A MISSIONARY ACROSS
SIDEl: TWO MISSIONARIES
SIDE2: THREE CANNIBALS AND A MISSIONARY

BRING TWO MISSIONARIES ACROSS
SIDEl: A CANNIBAL AND A MISSIONARY
SIuE2: TWO MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY BACK
SIDEl: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWO CANNIBALS

112

 BRING A CANNIBAL BACK

'SIDEl: TWO CANNIBALS AND A MISSIONARY
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING TWO MISSIONARIES BACK

SIDE1: THREE MISSIONARIES AND A CANNIBAL
SIDE2: TWO CANNIBALS

BRING A MISSIONARY AND A CANNIBAL BACK
SIDEl: TWO MISSIONARIES AND TWO CANNIBALS

. SIDE2: A MISSIONARY AND A CANNIBAL

BRING A MISSIONARY AND A CANNIBAL ACRQSS
SIDEL: A CANNIBAL AND A MISSIONARY

" SIDE2: TWO MISSIONARIES AND TWO CANNIBALS

BRING TWO MISSIONARIES ACROSS
SIDELl: TWO CANNIBALS
SIDE2: THREE MISSIONARIES ANO A CANNIBAL

BRXNG A MISSIONARY BACK
SIDEl: A MISSIONARY AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND A CANNIBAL

: BRING A CANNIBAL BACK

SIDEl: THREE CANNIBALS
SIDE2: THREE MISSIONARIES

BRING TWO CANHIBALS ACROSS
SIDE1: A CANNIBAL
SIDE2: TWO CANNIBALS AND THREE MISSIONARIES

BRING A CANNIBAL BASK
SIDEl: TWO CANNIBALS

", SIDE2: A CANNIBAL AND THREE MISSIONARIES

BRING TWO CANNIBALS ACROSS
SIDE1: NOBODY
SIDE2: THREE CANNIBALS AND THREE MISSIONARIES

(20 MOVES CONSIDERED)

BRING A MiZSIONARY AND A CANNIBAL ACROSS, LEAVING
TWO MISSIONARIES AND TWO CANNIBALS ON SIDEL,

BRggg A MISSTONARY BACK, LEAVING A CANNIBAL ON
L3 .

BRING TWO CANMIBALS ACROSS, LEAVING THREE MISSIONARIES

- ON SIDEL.
" BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON

SIDE2.

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDE1.

BRING A MISSIONARY AND A CANNIRAL BACK, LEAVING
A MISSIONARY AND A CANNIBAL ON SIDEZ2.

BRING TWO MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
ON SIDE1.

113

e T At NN

D T T B

T

st - et

TN

R s S S e 2

e e e 5

BRING A CANNIBAL BACK, LEAVING THREE MISSIONARIES ON
SIDEZ.

BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL ON SIDEL.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL AND THREE
MISSIONARIES ON SIDE2.

BRING TWO CANNIBALS ACROSS. LEAVING NOBODY ON SIDEL.

3%

Now I try the fox, gooose, and corn problem.

solve (fox, goose, and corn prob]em)
(DONT KNOW HOW)

I can use GPS, START, GOALP, MOVES, MAKE, and PROGRESS b
CANNIRAL, for GPS, START,... FOX, with only a few slight changes:
I must change {(mmm c ¢ ¢) to (fox goose corn) in starting con-

ditions; MOVES mus® return (MOVEO) and {(MOVEl) instead of (MOVE1l)
and (MOVE2), and :

(use gps cannibal)
{GPS CANNIBAL)

(nse start cannibal but {(replace m upl with (fox goose
corn)))
{START CANNIBAL)

{use goalp cannibal)
(GOALP CANNIBAL)

guse moves cannibal but

replace movel with move0) (replace move2 with movel))
(HOVES CANNIBAL)

(?;f;ne)moveo as list cons nil valueof from)

(use make cannibal)
{MAKE CANNIBAL)

{use progress cannibal)
{PROGRESS CANNIBAL)

114

il o o Y SRR ORI

[

T s T

I must change the forbidden conditions. Insteada of the
4 .

: couhtq advice, PROGRESS must check to see whether the goose is a
. member of the T0 side. 1f anything else is also a member, it

f should quit.

(tell progress (instead of countq advice)
if ' goose is not a member of (valueof tos, then ignore,

z if (cdr valueof to) then quit)
- PROGRESS FOX) e
o by
& Now GPS begins to solve the prob fem.,
A solve (fox, gcose, and corn problem)
. BRING A FOX ACROSS
1 SIDE1: A GOOSE AND A CORN
- SIDE2: A FOX - .
' BRING A GOOSE ACROSS
SIDE1: A FOX AND A CORINT, ©
g *»+ ERROR CALLED
i 1 interrupt it because
3 (tell phrase after, if normal f{s equal to ' fox,
¢ then return with (subst * tHe ' & value))
| PHRASE] »
%x "THE POX" sounds much better than "A FOX,” ana it's easy
@ to chan e; L
b ang

solve (fox, goose, and corn problem)
BRING THE FOX ACROSS

SIDE1: THE GOOSE AND THE CORN
SIDE2: THE FOX

BRING THE GOOSE ACROSS

SIDELl: THE FOX AND THE CORN
SIDE2: THE GOOSE

115

-‘T“.—~

.‘T“‘ A

R BN S

L el s e 0, S

PSS

R e s - ey 2]

e s T TR

BRING NOBODY BACK
SIDE1: THE FOX AND THE CORN
SIDE2: THE GOOSE

BRING THE FOX ACROSS
SIDE1: THE CORN
SIDE2: THE FOX AND THE GOOSE

BRING NOBODY BACK
SIDE1: THE CORN
SICE2: THE FOX AND THE GOOSE

BRING THE FOX BACK
SIDEl: THE FOX AND THE CORN
- SIDE2: THE GOOSE <

BRING THE GOOSE BACK
SIDEL: THE GOOSE AND THE CORN
SIDE2: THE FOX

BRING THE GOOSE ACROSS
SIDE1: THE CORNM
SIDE2: THE GOOSE AND THE FOX

BRING THE CORN ACROSS
SIDEl: THE GOOSE
SIDE2: THE CORN AND THE FOX

BRING NOBODY BACK
SIDEl: THE GOOSE
SIDE2: THE CORN AND THE FOX

BRING THE GOOSE ACROSS
SIDE1l: NOBODY :
SIDE2: THE GOOSE, THE CORN, AND THE FOX

{11 MOVES CONSIDERED)

LA

The sqlution takes 7 moves. GPS only considers 11 moves

all together.

>solve {fox and goose)
{11 MOVES CONSIDERED)

BRING THE GOOSE ACROSS, LEAVING THE FOX AND THE CORN
ON SIDE1.

BRING NOBODY BACK, LEAVING THE GOOSE ON SIDEZ2.
BRING THE FOX ACROSS, LEAVING THE CORN ON SIDE1L.
BRING THE GOOSE BACX, LEAVING THE FOX ON SIDE2.

116

Wt A e T A o e e

(MCVE3' to the list of move types. o

BRING THE CORN ACROSS, LEAVING THE GOOSE ON SIDEi.

BRING KOBODY BACK, LEAVING THE CORN AND THE FOX ON

BRING THE GOOSE ACROSS, LEAVING NOBODY ON SIDEI.

LI

I‘teturn to the cannibal and missionary problem and add :

" {change moves (insert (move3) after (move2)))
) (HOVES‘CANNIBAL)

eg‘ liran valueof from *{$1 - Sll- $1),

. "l
'

MOVE3 is defined in a tashibn similar to MOVE2 and MOVEl

using ALLTRAN.

solve (cannibal and missionary problem)
BRING THREE MISSIONARIES ACROSS
SIDEl: THREE CANNIBALS
SIDE2: THREE MISSIONARIES

BRING A MISSIONARY BACK:
.~ SIDE1: A MISSIONARY AND THREE CANKIBALS
SIDE2: TWO MISSIONARIES »

BRING THO MISSIONARIES BACK

S1Dt1: TM0 MISSIONARIES AND THREE CANNIBALS .~ . =

SIDE2: A MISSIONARY :

BRING THREE MISSIONARIES BACK
SIDE1: THREE MISSIONARIES AND THREE CANNIBALS

SIDEZ: ROBODY .

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS
SIDEL: A MISSIONARY AND TWO CANNIBALS
SIDE2: TWO MISSIONARIES AND A CANNIBAL

BRING A MISSIONARY AND TWO CANNIBALS ACRCSS
SIDE1: TWO MISSIONARIES AND A CANNIBAL
SIDE2: A MISSIONARY AND TWO CANNIBALS

117

S

Lt

R e TR o T it

POV S VS SO SR L

BRING.THREE CANNIBALS ACROSS j
SIDE1: THREE MISSIONARIES » Cod
SIDE2: THREE CANNIBALS

; ‘ BRING A CANNIBAL BACK
S SIDE1: A CANNIBAL AND THREE MISSIONARIES
SIDE2: TWO CANNIBALS ,

BRING A CANNIBAL AND TWO MISSIONARIES ACROSS
SIDEl: A MISSIONARY
SIDE2: THREE CANNIBALS AND TWO MISSIONARIES

BRING THREE MISSIONARIES ACROSS
SIDE1: A CANNIBAL
SIDE2: THREE MISSIONARIES AND TWO CANNIBALS

BRING A MISSIONARY BACK .
SIDE1: A MISSIONARY AND A CANNIBAL o
SIDE2: TWO MISSIONARIES AND TWO CANNIBALS o
BRING A MISSIONARY AND A CANNIBAL ACROSS !
SIDE1: NOBODY i
SIDE2: THREE MISSIONARIES AND THREE CANNIBALS ;
(12 MOVES CONSIDERED) ‘ ' ‘

BRING THREE CANNIBALS ACROSS, LEAVING THREE MISSXONARIES
DE1. :

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON SIDE2.

g?ég? THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL ON ?

SN A W SN LY

BRING A MISSIONARY BACK, LEAVING TWO MISSIONARTES AND
TWO CANNIBALS ON SICE2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBOODY ON SIDEIL.

. R

Now the solution only takes five moves instead of the eleven
required for a two man boat. Only 12 moves are considered in-
- stead of 20. Both heuristics introduced earlier still operate

in conjunction with this problem,

I would now like to be able to indicate the number of cannibal (s)
or missionary(ies) in the initial statement of the problem. Pre-
paratory to this, I'll have to make the PROGRESS evaluation a
little more subtle. '

118

PO Ry

o

el1l progress {instead of countq advice),

1
éeaten sidel) or (eaten side2) then quit)

t
f
14 OGRESS CANNIBAL)

This replaces the old counting method with a call to the -

/ function EATEN.

{(define ezten {x) 8s ' m is a member of x and

(eval cons * plus x '({m , -1) (c + 1})) is greater than ;

(EATEN)

Basically what EATEN does is take the representation of a
side, e.g., (m ¢ m m ¢}, puts "PLUS" in front of it, which yields
(PLUS mecmm c), and evaluates this with m==1 and c=1l. If the
resultinq score is greater than zero, then the cannibals win,

and the program must abandon this line of attack.

(change start (replace m up2 with (flipq (sublis
‘({cannibals . c; (cannibal . €) (missionarias . m)
imissionary .

{either (- for $1 $1 and $1 81) (-)))

i\either ((repeat (= car 3) (/t 1 4}) (repeat (= car -2)

(rmmecce))M)
{START CANNIBAL)

START must be modified accordingly. When I say SOLVE
{... FORN Y AND M 2), START will make a list of N Y's and M 2's

be the starting conditions; otherwise it uses mmmc c c).
1 give GPS an easy problem to check it out,

solve (cannibal and missionary problem for 1 cannibdal

ard 1 missionary)
- BRING A CANNIBAL AND A MISSIINARY ACROSS

SIDEl: NOBODY
SIDE2: A CANNIBAL AND A MISSIONARY

{1 MOVES CONSIDERED)

119

FESR L S

1
i
H
]

R

-l B L i e St e

]
|
R
A
)
B
i

- P—— R

e e

L S A T RN TN

eprESere s L

B

o s

)
!
%

1 g

i
f !
i BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING :
Hh _ NOBODY ON SIDEL. g
i 5
. L3¢ ;
i ;
|
Now I am going to make it say (1 MOVE CONSIDERED) First p
1'11 define a function AGREE which does what a portion of ’ ﬁ
PHRASE used to do. ‘
(defihe agree (x y} as 1ist sublis *((1 . 1) (2 . two) -
(3 . three)) x, if x is equal to 1 then y, else !
{plural y)) g
(AGREE) :
4
agree (1 cannibal) :
?1 CANNIBAL) '@
-agree (2 missfonary) i
?THO MXSSIONARKES{ B
“‘;This is what AGREE is supéoseu to dos’ ;
(change start after (replace printred nl with
(nconc agree number ' move '{considered))))
(START AFTER) : .
Now I change START.
. . ‘
solve (cannibal and missionary problem for 1 cannibal
and 1 missionary)
BRING A CANNXBAL AND A MISSIONARY ACROSS
SIDEl: NOBODY
SIDE2: A CANNIBAL AND A MISSIONARY
{1 MOVE CONSIDERED) -
" BRING A CANNIBAL AND A HISS!ONARY ACROSS, LEAVING
NOBOCY ON SIDEL.
QTO
120
. s - T P T Y L NS IOy *fuvﬂﬁﬂymﬁ;
-:--—»~~-—-vr.~1-u‘ i ATEN e § e RIS AT, gy, W0 K, W s O TR AWl - T ot e *""MM - W.‘ Al -

g

*'" o Now I try the problem with 4 cannibals and 4 m1ssionaries.

This can't be solved with only a two man boat.

‘ solve (cannibal and misiionaries for 4 cannibals and‘
w‘vu 4 missionaries) ‘ ‘

(72 novss cousxosaso) g
MIL B
£ 1 taad in the advice for the three-man ‘boat that was made)
.. earlier.” (PILOT had saved it under the file GPS7 LISP.)
* = S c L
] evalread (gps7 1isp speak) . , . vl
" (CHANGE MOVES (Inszar (MOVE3) AFTER (MOVE2))) e e
MOVES CANNIBAL) e
(DEFINE NOVES AS ALLTRAN VALUEOF FROM * (s1 8 $1§ 1) ;
((246)1235 7)) »]
(novss) | | o o
sTOP - : , | - L
. solve (canniﬁai and missionaries for 4 cannibals and
o 4 missionaries)
b (17 MOVES CONSIDERED)
o BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL AND
o " 4 MISSIONARIES ON SIDEI.
o " BRING A CANNIBAL BACK, LEAVING TNO CANNIBALS ON SIDE2.
e | BRING TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES ON
OE
BRING_A CANNIBAL BACK, LEAVING THREE.CANNIBALS ON . ' ;
SIDEZ. ' 3
BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL : ' 3
~ AND A MISSIONARY ON SIDEI. e I
~BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING THO L | :
~ MISSIONARIES AND TWO CANNIBALS ON SIDEZ, . e | ;
- BRING TWO MISSIONARIES AND A CANNISAL ACROSS LEAVING g _ : SRR
A CANNIBAL ON SIDEI. ERe | | n
e . BRING A MISSIONARY BACK, LEAVING THREE CANNIBALS AND . LA
i _ THREE MISSIONARIES ON SIDEZ. ' - !
@ " BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING " ﬁ o
‘. NOBODY ON SIDE1. _ {
: 121

e AT T I P . searcids T ST S5 AL W, ol Sl e s o g W A U e

B A AR o s I Lt P i B s 4 it

PR

i o ‘Now GPS solves this problem and another one.
R ‘, ‘4

f solve (cannibal and missionaries for 4 cannibals and
5 missiuﬂaries)) s

(!0 MOVES. CON&IDERED)

ﬂl BRING THREE CANNIBALS ACROSS LEAVING A CANNIBAL ARD
5 MISSIONARIES ON SIDE!

BRING A CANNIBAL BACK LEAVING TWO CANNIBML; ON SIDEZ

BRING THREE MISSIONARIES ACROSS, LEAVING TWO CANN:aALst
AND TWO MISSIONARIES ON SIDEL. ‘ |

BRING A MISSIONARY BACK, LEAVING THO MISSIONARIES AND N
TWO CANNIBALS ON SIDEZ. S

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS LEAVING
A CANhlBAL AND A MISSIONARY ON SIDEIL. ;

§RING A HISSIONARY BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON 510[2

ERING TNO MISSIONARIES AND A CANNXBAL ACROSS LEAVING
NGBODY ON SIDEl

A

(change moves (delete move3 ual))
{(MOVES CANNIBAL)

I would lxke to solve this latter problem with the orxginal

two man boat so 1 delete the MOVE3 advice.

solve {cannibal and missionaries for 4 cannibals and ff.”
5 missionaries) . - o

(30 MOVES CONSIDERED)

, BRING TNG CANNIBALS ACROSS, LEAV!NG TNO CANN!BALS)
‘AND 5 HlSSlONARXES ON SIDEl

" BRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDEZ

" BRING TW? CANNIBALS ACROSS, LEAVING A CANH!BAL AND
5 MISSIONARIES ON SIDEL.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS on ‘. ¢

BRING TWO MISSIONARIES ACROSS, LEAVING 1WQO CANNIBALS
AND THREE MISSIONARIES ON. SIDE1.

122

BRING A CANNIBAL BACK, LEAVING TWO MISSIONARIES AND
A CANNIBAL ON SIDEZ2.

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING TWO
CANNIBALS AND TWO MISSIONARIES ON SIDEL.

BRING A MISSIONARY BACK, LEAVING TWO CANNIBALS AND THWO
MISSIONARIES ON SIDEZ2.

- K BRING A MISSIOHARY AND A CANNIBAL ACROSS, LEAVING A
[CANNIBAL AND TWO MISSIONARIES ON SIDEL.

. "BRING A CANNIBAL BACK, LEAVING THREE N!SSIONARIES
CEL AND TWO CANNIBALS ON $1DE2. ‘

" BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING A
CANNIBAL AND A MISSIONARY ON SIDEL.

{v‘.‘ BRING A MISSIONARY CACK, LEAVING THREE CANNIBALS AND
£ ‘ THREE MISSIONARIES ON SIDEZ2.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING A
MISSIONARY ON SIDEL.

BRING A CANNIBAL BACK, LEAVING 4 MISSIONARIES AND
THREE CANNIBALS ON SIDE2. .

BRING A CANNIBAL AND A MISSIONARY ACROSS, LEAVING
NOBODY ON SIDEL

e

e e s T O (e LT N T TR
3

s TS TR AT T

This solution takes 15 moves, as opposed to a seven move

’solution for a larger boat. 1In the latter case, 10 moves were

T IR M T -

considered, while 1n this one 30 moves were considered,

%Rather than éontinually adding and removing the MCVEJ advice,

$set num (= car -1}) ta a boat -} (($set num '2) .)))
{advice quote ({{repeat (= num) (moven (= (car n
é{‘g}ist "moves * cannibal)})}}NiNN))

"istaft : (put (1ist {f11pg solve ((either (- for $1

1£ 1 éaj “a bo&t that can carry 3," MOVES will return with

¢ ((MOVEN 1), (MOVEN 2), {MOVEN 3)).

q
(
}‘ .
!‘

o ‘ I V5 2

.7 wonld like to specify the size of the boat as an input parameter.

* e v ——— ALY

' segment.

it computéb the

:“ xIt n is 3, 1t con- . o

= ALL!RA? ’ Note that these aze identical to those in the oriqinal”

definition of MOVE3. jﬁ;

(ﬁefine moven tn) as prog? setq n flip thrun addl "
(times 2 n) ((repeat 2 §1) §1) ((?repeat $ 1))

(repeat 2) (repeat 10 -1), allt mn va?ueof from rdar
ncdr n)] L , ‘

*#** ERROR CALLED . ‘
PARSING : PROGZ SETQ N FL!PQ rn~u~ AUD1 (TIMES 2 u)
(REPEAT $1 $1) $1) (((REPEAT § $1)) (REPEAT 2) -
REPEAT 1) -1) ALLTRAN VALUEOF FROM . CDAk N coa u) ‘

(EDIT OR FORGET IT)

‘, This error is because THRUN has not been defined at this

point. Therefore, the parsing routine doesn't know how many

'arguments is has. (THRUN w111 be the functiog that constructs

the 1list (1 234567).) 1do this section of parsing myself
by substituting in (THRUN (ADDI (TIMBS 2 N))) for the unparsed

N SRR R N

. (re lace thrun n2 with (thrun {add1 (times z n))))
. %** FRROR CALLED

PARSING :+ PROG2 SETQ N FLIPQ THRUN THRUN (ADDI
TINES 2 N)I) {(REPEAT $1 $1) $1) (((REPEAT § $1))

. {REPEAT 2) REPEAT 1) -l) ALLTRAN VALUEOF FRON e
- COAR N CDR N) o

£

" I forgot to take out THRUN.

126

. (EDIT O FORGET mo : f'ff,a }:? f ‘jf7f;;ﬁ,‘,;‘n

;
3
4
%
5
¥

R AT g L B g T 0e L e -

TH TR

.
!
-

-
"

-,

P s T

i
!
|
!

¥, O

edit
idelete th%un) ’ _ . . .

insert (quote <) after repeat - vepeat) .

.

x
DEFINE MOVEN (N) AS PROG2 SETQ N FLIPY (THRUN ¢ADDI
TIMES 2 N))) ((REPEAT $1 $i) S1) {{(REPEAT -- § $1)
gaggen; 2) (REPEAT 1) -1)° ALLTRAN VALUEOF FROM CDAR - . - .7 .
stop . . _
(novsu) s

(define thrun (n) as prog (x)
loop setq x cons n x, -
{f (zerop setq n subl n) then (return x) end, g
go loop

(TFWN) +

thrun (7) .
(12345617)

.
. Py .

’

. Now 1 define THRUN

"

breakiist (moves moven)
(MOVES MOVEN)

and BREAK on MOVES and MOVEN to see if they are correct, N

"solve (cannibal and missionary problem for 3 in a boat
and for 4 cannibals and 5 missionaries
(BREAK IN HOVES)

I get a BREAK in MOVES,

iVALUE OF MOVES)
{(MGVEN 3) (MOVEN 2} (MOYEN 1))

with the correct value. Note that 1t is reversed because of

‘the heuristic introduced earlier.

{BREAK IN MOVEN)
n
3

125

e Y * e P———eT AT
.

L

th Break in MOVEN; I ask for the value of N; it is 3,

ask that MOVEN be evaluated.

~
-

-

eval

DEPTH

*** ERROR NOROCM

b ¢

GC AT 032;3 FULL WORDS .723 FREE 148 PUSH DOWN

L o B
_ (BREAK 1N MOVEN) : A | f

The BREAX is maintained in spite of the error. I wipe out

. o ' the EDIT routines to make space,'ind go'on;i
. 0 *

{wipe edit)
. {ELIT)
KX eval

‘ . **+ ERROR NUIMVAL
r i (S $1 881 88%1)2461357)
(BREAK IN MOVEN)

This error is because N has been changed by MOVEN, I hust
reset it to 3, which I do. '

(getq r 3) eval

(MOVEN EVALUATED)
{car moven)
(CCCCMMMMM
{cadddr moven)
(CCHMCCHMMMM

MOVEN is evaluatea, I look at the first element of its value,
and at the third element - both are wreng.. -1 BREAK ALLTRAN, - - -

reset n and try again., - . N : Co

{breaklist alltran) ' ' : e 5
: - (ALLTRAN ‘ ‘ ‘ o 3
(;etq n3 i

o

eval

(BREAX IN ALLTRAN)
F
“(2461357)

126

1
!
i

. P {
b e e b il P s’ phiraait? Sl et i

t"«gvs- |
‘ .

i

|

TRATRTRET s s
~

’

ALLTRAN is not getting the right value for z. 1I'll set it
correctly and see if anything else is wrong.

(setq z *((2 46)1357)) ' o
((246)1357) *

eval .

GC AT 03041 FULL WORDS 730 FREE 106 PUSH DOWN
DEPTH 361

*** ERROR NOROOM
NIL :
(BREAK IN ALLTRAN)

- I St e

e

! I ran cut of spsce acain., <This time- I wipe the SYSTEM

‘ routines,

o {(wipe '’ system)
e (SYSTEM)

i eval

g TALLTRAN EVALUATED)

i ‘ (car alltran)

L ((CCC)CMMMMM)
(cadddr alltran)
((CCM)CCMMMN)

"*ALLTRAN is correct. I quit, and go bagk to the top, and

. restore SYSTEM and EDIT.

{
%
W
£
4

ok
: ALLTRAA)
P MOVEN EVALUATED)
SE quit
I #** [FRROR CALLED

Foo (MOVEN)
; - restore (system edit)
(SYSTEM EDIT)

The first thing to do is correct the bug in MOVEN.

ge moven expr (replace '{repeat 2) with ({(repeat

EN EXPR)

127

OV ol et o SR S e e e e L s L N e SRS R e o

i

s e Ty

(before all : {f fsleft is less than 500, then (makeroom)
ALL L T d

I decide to have the system ﬁtself make room, I can do this (

by advising ALL functions to check the number of udrq; left.

{define makeroor as prog (x) - o o

setq x '(update edit system break),

fancyprint cons lastfn append '(: only) cons fsleft
append ‘({words left) (1ist period cr), ‘ o

loop 1f (get car x ' wiped) §s null then :
(fancyprint append ' (1 had to wipe) cons wipel car x

list period cr), ‘ o
if pop x then (go loop) }
(MAKERQOM)

MAKEROOM calls WIPE on (UPDATE EDIT SYSTEM BREAK) until it
can find something to wipe out, and then prints ar appropriate .

mesgsage.

solve (cannibal and missionary problem for 3 tn a boat
and for 4 cannibals and 5 missionaries)
{BREAKX IN MOVES) :
{unbreaklist '* moves) -
(MOVES)
ok
(MOVES)
{BREA IK MOVEN)
eval
(BREAK IN ALLTRAN)

eval s .)
FULL WORDS 715 FREE 140 PUSH DOWN

GC AT 03041
DEPTH 450
**+ ERRCR NOROOM
RIL

.. (BREAK IN ALLTRAN) SR

. The iysteﬁ‘didn't call MAKEROOM because it ran out of space
while inzide o. a function that is not advised, namely AMi, a
subfunction of ALLTRAN., If I give AMl some advice, then the

check for available space will also be performed here.

128

§ i
¥ !
3 |
?“ %
- j
L |
(
i (system) i
; {tell aml before nil)

2 SYS1: ONLY 994 WORDS LEFT,

5 1 HAD TO WIPE EDIT.

% AM1

L

¥ ok

o NIL

£

While auvising AMl, SYS1 ran into a situation in which there

" were fewer than 994 words left - actually there were only 140

according to the error message. However, a garbage collection

occurred befcre the print out of the message and so] it states,

i
I gomewhat contradictorily, that there are only 994 wvﬂds left.

eval

I go on with the GPS problém.

AM1: ONLY 453 WORDS LEFT.
I HAD TO wiPE SYSTEM
(ALLTRAN EVALUATED)
(car allitran) B
((CCCYCHMMHMMM)

Correct.

{unbreaklist alltran moven)
(ALLTRAN MOVEN)

Unbreak everything and go.

ok
{(ALLTRAN)
(MOVEN EVALUATED)

ok
(MOYEN)
BRING THREE CANNIBALS ACROSS
SIDE1: A CANNIBAL AND 5 MISSIONARIES
SIDEZ2: THREE CARNIBALS

129 -

2T R

s o Lon

BRING A CANNIBAL BACK
SIDElI: TWO CANNIBALS AND 5 MISSIONARIES
SIDE2: 140 CANNIBALS

BRING TWO CANNIBALS AND A WISSIONARY ALROSS
SIDEl: 4 MISSIONARIES
SIDE2: 4 CANNIBALS AND A MISSIONARY

 BRING A CANNIBAL AND TWO MISSIONARIES AROSS
SIDEL1: A CANNIBAL AND THREE MISSIONARIES
 SIDE2: THREE CANNIBALS AND TWO MlSSIONAR!ES

BRING THREE MISSIONARTES ACROSS
SIDEl: TWO CANNIBALS AND TwWO MISSIONARlEa .
SIDE2: THREE MISSIONARIES AND TWO CANNIBALS

o : : - © BRING A MISSIONARY BACK .
g SIDEl: THREE MISSIONARIES AND TWO CANNIBALS
o o : ~ SIDE2: TWO MISSIONARIES AND TWO CANNIBALS

i ;“ ‘ BRING A MISSIONSRY AND TWO CANNIBALS ACROSS
' SIDEL: TWO MISSIONARIES
SIGE2: THREE MISSIONARIES AND 4 CANNIBALS

; BPING TWO MISSTONARIES AND A CANNIBAL ACROSS
5 SIDEL: A CANNHIBAL AND A MISSIONARY
j SIDE2: 4 MISSIONARIES AND THREE CANNIBALS

BRING & MISSIONARY BACK

SIDEL: “WO MISSIONARIES AND A CANNIBAL

SIDE2: THRLE CANNIBALS AND THREE MISSIOMARIES
BRING TWO MISSIONARIES AND A CANNIBAL ACROSS
SIDEL: NOBODY

SIDE2: 5 MISSIONARIES AND 4 CANNIBALS
{10 MOVES CONSIDERED)

i . : BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL AND
B : S MISSIONARIES ON SIDEL.

L _ BRING A CAENI. L BACK, LEAVING TWO CANNIBALS ON SIDEZ.

BRIKG THREE MISSIONARIES ACROSS, LEAVING TWO CANNIBALS
AND TWO MISSIONAZIES ON SIDEL. '

BRING A MISSIONARY BACK, LEAVING TWO H!SSIONARIES AND
~ TWO CAKNNIBALS ON SIDE2.

g A e T Ty ST S R R S R I M e S Y SR

BPING TNO HISS!ONARIES AXD A CANN]IBAL ACROSS LEthNG
A CANNIBAL AND A MISSIGNARY ON SIDEL.

BRING A MISSIONARY BACK, LEAVING YHREE CANNIBALS AND
THRCE MISSIONARIES ON SiDE2.

P ‘ ' BRING TwO MISSICNARIES AND A CANNIBAL ACROSS, LEAVING

o NOBODY ON SIDEL.
3 3L
. 130

e T NP s S, i« 1 T R TT

4

¥

! . -t o b st i At s, ——ra
L W e e G e TR a4 ORI £ T MEATOAIIL U 15 T A o a4 4t 0 ot £ - o sl s

\,

L I now solve various problems.

! solve (cannibai)
{20 MOVES CONSIDERED)

‘TO
solve {cannibal and missfonaries for 3 in a boat)

(12 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING THREE
MISSIONARIES ON SIDE]L.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
SIDEZ,

BRING THREE MISSICNARIES ACPROSS. LEAVING A CANNIBAL
ON SIDEI.

BRlNé A MISSIONARY BACK, LEAYVING TW0O MISSIONARIES
AND TWO CANNIBALS ON SIDEZ.

BRING A MISSIONARY AND A CANNILAL ACRO)S, LEAVING
NOBCDY ON SIDEL.
'T#
solve (cannibal and missionaries for 3 in a boat and
. for 4 cannibals and 4 missionaries)

AM1: ONLY 463 WORDS LEFT.
1 HAD TO WIPE EDIT.

{17 MOVES CONSIDERED)

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL
AND 4 MISSIONARIES ON SIDEL.

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON

SIDE2.
BRING TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES

‘ ON SIDEL.

g BRING A CANNIBAL BACK, LEAVING THREE CANNIBALS ON -
SIDE2.

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSICNARY ON SIDEL.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING TWO
¢ MISSIONARIES AND TWO CANNIBALS ON SIDE2,

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS, LEAVING
A CANNJBAL ON SIDE1L.

131

S B ot ']

ERTERPRRST” % YA ST P I LR e = VRO SN PY NOPRL L TR WY . O T ¥ o) o L S R L Y P ek -

e

47 32 e £ p23 T

e

A e Sy A s £ BT T T T

oot Wi -

BRING A MiSSIONARY BACK, LEAVING THREE CANNXBALS
AND THREE MISSIONARIES. ON SIDEZ2. :

BRING A MISSIONARY AND A CANNIBAL ACROSS, CLEAVING
NOBODY ON SIDEL. - | ;

*Te

Now I try a néw problem - which GPS can’t solve.

solve (how big a boat do you need for 4 cannibals
and 4 missionaries)
(GONT KNOW HOW)

(start : bind conditions to (flipgq solve (- for =) i
{solve cannibal and missionary for n in 2 boat and

for -)))
START

If I say (HOW BIG A BOAT DOES IT TAKE FOR ...), CONDITIONS
will be bourd to (SOLVE CANNIBAL AND MISSIONARY FOR N IN A BOAT
AND FOR ...},

{tell start, return with (prog (n}

setq n 1, ,

Toop *f (valueof subst n * n conditions) then :
(return append ‘(a boat that can carry) Tist n) end, .

12§;ement n, go ltoop;) :
RT

This advice will cause START to loop, calling SOLVE for

diffevent values of N. Now GES can solve the problem.

solve (how big a boat do you need for 4 cannibals and
4 missionaries)

{THREE MOVES CONSIDERED)

MAKE: ONLY 382 WORDS LEFT.
1 HAD TO WIPE EDIT.
{72 MOVES CONSIDERED)

(17 MOVES CONSIDERED)

132

ey e e £ n

=

] A R A AT T ooy ¢ ’

b
E

BRING THREE CANNIBALS ACROSS, LEAVING A CANNIBAL
AND 4 MISSIONARIES ON SIDEL,

BRING A CANNIBAL BACK, LEAVING TWO CANNIBALS ON

SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING 4 MISSIONARIES

ON SIDE1.

gRlNg A CANNIBAL BACK, LEAVING THREE CANNIBALS ON
IDE2Z. : .

BRING THREE MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDE1L.

BRING A MISSIONARY AND A CANNIBAL BACK, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDEZ2.

BRING TWO MISSIONARIES AND A CANNIBAL ACROSS,
LEAVING A CANNIBAL ON SIDE1.

BRING A MUISSIONARY BACK, LEAVING THREE CANNIBALS
AND THREE MISSIONARIES ON SIDE2.

BRING A ﬁISS!ONARY AND A CANNIBAL ACROSS, LEAVING
NOBJDY ON SIDEL.

(A BOAT THAT CAN CARRY 3)

GPS considered three moves with a boat that could only carry
1, 72 moves with a boat that could carry 2, and found the answer

with a boat that can carry ‘3.

Now I am going to introduce a new supermissionary - a tarzan,
who cannot be eaten, although he can help to outnumber the

cannibals and protect the missionaries, and can alsoc row the

boat across.

{change eaten expr (insert (x . -1} after (m . -1)))
(EATEN EXPR)

I use X to stand fbr the new element.

133

i laiifians 2 oo o o e T T e 1

i , %change start
e . i{nsert (tarzzn . x) (tarzans . x} sfter (missiuna!

(replace cither nl with (- for (repeat 2 51/ }
{numberp) $1) -)) i

(replace etther - efther nl wit 4
{{repeat m (repeat (= car 1) (/r m 2)))))) i
(START CANNIBAL) ‘

Instead of saying SOLVE (CANNIBAL FOR N 'MISSIONARIES AND
b o N CANNIBALS) I now say SOLVE (CANNIBAL FOR N MISSIOSARIES
2 M CANNIBALS P TARZANS). Actually this advice modification to

START will allow it to handle any number of different types of |

; people. i
" i
i ' p
i {change start after Sinsert (x . tarzan) after ;
A {m . misstonary)

(START AFTER)

ﬁ : (change make (insert (x . tarzan) after (m .

% ;) "

misstonary }}
L .] {MAXE CANNIBAL

- Now I try it out. Note that since I don't tell it how big 4

a boat to use, GPS assumes a two man bhoat.

selve (cannibal and n1ssionar{ problem for 3
cannibals, 2 missionaries, 1 tarzan}
BRING TNO CANNIBALS ACROSS

Lo SIDEL: A CANNIBAL, TWO MISSIONARIES, ANG A TARZAN
g v SIDE2: TWO CANNIBALS

BRING A CANNIBAL BACK

SIDEl: TWO CANNIBALS, TWO MISSIONARIES, AND A TARZAH
SIDEZ2: A CANNIBAL

BRING TWO CANNIBALS ACROSS
SIDEl: TWO MISSIONARIES AND A TARZAN
SIDE2: THREE CANNIBALS

BRING A CANNIBAL BACK

SIDELI: A CANRIJAL, TWO MISSIONARIES, AND A TARZAN
SIDE2: TWO CANNIBALS

v ’ : BRING A CANWIBAL AND A MISS!ONARY ACROSS
H SIDEY: A MISSIONARY AND A TARZAN
¢ _ SIDEZ: THREE CANNIBALS AND A MISSIONARY

134

-

BRING A CANNIBAL AND A TARZAN ACROSS
SIDE): TWO MISSIONARIES
SIDE2: THREE CANNIBALS AND A TARZAN

BRING A CANNIBAL BACK
SIDEl: A CANNIBAL AND TWQ MISSIONARIES
SIDE2: A TARZAN AND TWO CANNIBALS

BRING A CANNIBAL AND A MISSIGNARY ACROSS
SIDEl: A MISSIONARY
SIDE2: THREE CANNIBALS, A MISSIONARY, AND A TARZAN

ERING TWO MISSIONARIES ACROSS
SIDEl1: A CANNIBAL
SIDE2: TWO MISSIONARIES, A TARZAN, AND TWO CANNIBALS

BRING A MISSIONARY BACK
SIDF1: A MISSIONARY AND A CANNIBAL
SIDE2: A MISSIONARY, A TARZAN, AND TWO CANNIBALS

BRING A MISSIONARY AND A CANNIBAL ACROSS

SIDEl: NOBODY
SIDE2: TWO MISSIONARIES, A TARZAN, AND THREE
CANNIBALS

(11 MOVES CONSIDERED)

AGREE: ONLY 493 WORDS LEFT.

1 HAD TO WIPE EDIT.

BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL, TWO
MISSIONARIES, AND A TARZAN ON SIDEL.

ZRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDE2.

BRING TWO CANNIBALS ACROSS, LEAVING TWO MISSIONARIES
AND A TARZAN CN SIDEL.

g?!gg A CANNIBAL BACK, LEAVING TWO CANNIBALS ON
DE2.

BRING A CANNIBAL AND. A TARZAN ACROSS, LEAVING TwO
MISSIONARIES ON SIDEI.

BRING A CANNIBAL BACK, LEAYING A TARZAR AND T¥O
CANNIBALS ON SIDEZ,

BRING TWO HISSIONREIES ACROSS, LEAVING A CANNIBAL
ON SIDEIL.

BRING A MISSIONARY BACK, LEAVING A MISSIONARY, A
TARZAN, AND TWO CANNIBALS ON SIDEZ.

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
NOBODY ON SIDEL.

"y

135

R ey Laauy onl il o Sp s S S R e pmp——

-

[L300 St I

O

“

The solution is only nine moves long, the minimum to
gransfer six people, as opposed to the eleven without Tarzan's .

help.

3 e TR AT G R o W e e et

Now ngive it a trivial problem - nobody can get eaten,

) | . ' : ' solve (cannibal and missionaries for 3 cannibals,
’ 3 tarzans)

(9 MOVES CONSIDERED)

b ‘ BRING TWO CANNIBALS ACROSS, LEAVING A CANNIBAL AND
: _ THREE TARZANS ON SIDEI.

BRING A CANNIBAL BACK, LEAVING A CANNIBAL ON SIDEZ;VQ

! . BRING TWO CANNIBALS ACROSS, LEAVING THREE TARZANS
f ON SIDEL.

: g?égg A CANNIBAL BAfK. LEAVING TUO CANNIBALS on

3RING A CANNIBAL AND A TAQZAN ACROSS, LEAVING TWO °
TARZANS ON SIDE1,

BRING A CANNIBAL EACK, LEAVING A TARZAN AND TNO
CANNIBALS ON SIDE2.

ARING A CANNIBAL AND A TARZAN ACRCSS, lEAVlNG A
TARZAN ON SIDEL.

: v BRING A CANNIBAL BACK LEAV!NG TNO TARZANS AND TXO
; CANNIBALS ON SIDE2.

(o BRING A CANNIBAL AND A TARZAN ACROSS, LEAVING
s .. NGBODY ON SICEl.

g

i
é
;
!
I
‘

+nd this problem combining all of the things I have told the
ﬁroblcm solver.

|

i solve (how big a boat do you need for 3 miss!on.rics.
i S | tarzan, 4 cannibsls)

{4 MOVES CONSYDERED)

{30 MOYES CONSIDERED)

i ! | : , 136

T

TR T ot e

BRING A MISSIONARY AND A CANNIBAL ACROSS, LEAVING
TWO MISSIONARIES, A TARZAN, AND THREE CANNIBALS

ON SIDEL.

BRING A MISSIONARY BACK, LEAVING A CANNIBAL ON SIDEZ,

BRING A TARZAN AND A CANNIBAL ACROSS, LEAVING THREC
MISSIONARIES AND TWO CANNIBALS ON SIDEL.

BRING A TARZAN BACK, LEAVING TWO CANNIBALS ON SIDE2.

BRING A TARZAN AND A MISSIUNARY ACROSS, LEAVING TWO
MISSIONARIES AND TWO CANNIBALS ON SIDEI.

BRING A HISSIONARY BACK, LEAVING A TARZAN AND WO
CANNIBALS ON SIDEZ. -

BRING TWO CANNIBALS ALRDSS. LEAVING THREE MISSIONARIES

ON SIDEL.

BRING A CANNIBAL BACK, l(AVING THREE CANNIBALS AND
A TARJAN ON SIDEZ. ‘

BRING TWO MISSIONARIES ACROSS, LEAVING A CANNIBAL
AND A MISSIONARY ON SIDE!,

BRING A MISSTUNARY ANU A CANNIBAL BACK, LEAVING A
MISSIONARY, A TARZAN, AND TWO CANNIBALS ON SIDEZ.

BRING TW0O MISSTONARIES ACROSS, LEAVING TWO CANNIBALS
ON SIDEL,

BRING A TAR/AN BACK, LEAVING THREL MISSIONARIES
AND TWO CANNIBALS ON SIDEZ.

BRING A TARZAN AND A CANNIBAL ACROSS, LEAVING A
CANNIBAL ON SIDEL.

BRING A TARZAN BACK, LEAVING THREE CANNIBALS AND
THREE MISSIONARIES ON SIDE2.

BRING A TAR/AN AND A CANNIBAL ACROSS, LEAVING NOBODY
OR SIDEL.

(A BOAT THAT CAN CARRY 2)

137

et

-

L 4 vhg——— g YN

i
i
b

T
X

CHAPTER 7

IMPROVING "-ILOT

PILOT is the result of an evolutionary process extending
over more than two years. However, there is no reason to assume
that this process has terminated, nor that PILOT has reached
some sort of ultimate state. This chapter discusses ways that

"PILOT might be improved at several levels, ranging from specific

suggestions for molifying the function ADVISE, through changes
in FLIP and the translator, tc oxtensions of the subjective

‘ model for programming. However, the significance of PILOT lies

not in any specific characteristics or features it possesses,

but rather In that it demenstrates that it is possible to get
computers to participate in, and ccoperate with, research efforts
in programming to a much greater extent than is now being done.

Questions of Efficiency

The heart of the PILOT system is .the function ADVISE,
which executes a procedure along with its advice. 1In attempting
to evaluate PILOT's efficiency, we must compare programs written
using PILOT, f.e., in which ADVISE is called to interpret pro-

cedures, with those written directly in LISP. The same program

written in machine language would probably be more efficient.
But, there is always a tradeoff in efficiency between generality

and specificity. Presumably the ease of programming compensatss

; for this factor, or you would not use the more general system.

The question, therefore, is: assuming your program is to

 pe written in LISP, how much does it cost you to do it within

PILOT. i.e., using ADVISE? This will then have to be weighed
against the conveniences of being able to make changas immed-

jately by advising.

139

e aeman -

L e e g

g, T e

Sy 7 T G e AR S NI

s

3 e SRR s — T PRI R TR

R

It the‘p:quam is to bé run interpretively, as opposed to
compiled, the cost is practically zero. This is because ADVISE 'E
and its satellite functiong are all compiled. Therefore, the :
overhead involved in‘calling ADVISE is small coﬁpared with the
time required to interpret the pieces of advice. These would
have to be interpreted in some form anyway; either as adviée,

_or as a part of the definition of the function. For example,
suppose you wish to modify the function PROGRESS in the éxample

in Chapter 6 so that whenever the cannibals would eat the misasion-
aries, PROGRESS ketuxns NIL. Then gomewhcra, either in the .
definition of PROGRESS or as a piece of advice, there must be

some S-expression representation of this computation, in the

form of a conditional with appropriate clauses., This conditional
must at some point be interpreted for PROGRESS to werk as in-
teﬁded. 1f PROGRESS is uncompiled, the dif!e;ence between
interpreting this modification as advice, and including it in

the function definition directly, is small.

Por completenens, I include here éomputation times‘ for

some of the experimants in Chapters % and 6. These are for
programs run interpretively, using ADVISE, These figures do
not include time spent in garbage collection.

Remarks ' . Time (seconds)

{Chapter 5: Ded-ictive Question-Answering System}
Question: (AT PENCIL COUNTY) ’

no moditications ‘ 18.2

questions not containing variables are)

angwered only once 14.2 :
with English output ‘ o 27.0

* Although PILOT operates in a time-shared environment, these

times are actual CPU times as computed by interrogating an
internal clock.

140

Remarks Time (seconds)

0 { : .
? Question: (AT PENCIL Y) - corpus permits endless /
: deduction ’ : i

b . ‘ 4

{ limit on number of recursive calls to SOLUTION1 ; !

v set lat 1; answer (AT PENCIL DESK); 3 gquestions S . .

: considered ' 3.5 ‘ -

limit set at 2; answer ((AT PENCIL DESK) (AT
{ PENCIL HOME)): 11 questions considered) 11.5

limit set at 3, answer {(AT PENC1I, DESK) (AT
PENCIL HOME) (AT PENCIL COUNTY): 39 questions 41.7

no limit - if question is repeated, return all
answers found so far; 17 questions considered 14.2

! {Chapter 6: General Problem Solver]

Problem: Cannibal and Missionary
No Jeuristic, 68 moves 14.5
Heuﬁistic:'bring two across, one back; 35 moves 8.9

Heuristic: do not attempt moves considered. .
previously; 20 moves 7.5

i If the user wishes to compile his programs, the questiorn of
efficiency becomes more serious, Although each individual piece
of édvice can be compiled. the overhrad involved in calling
ADVfSE is now proportionally larger, It might eQen be desirable
to include in PILOT a feature for collapsing advice into the
fun#tion definition prior to compilation, so that it would then
runias one combiled subroutine, without calling ADVISE. However,
if it became neccssari to make modifications subsequent to'caﬁ-
pilgtion; the ﬁser must either revert to calling ADVISE with the
£un4tion, or else save its symbolic definition and recompile,.

In addition, eliminating the call to ADVISE means that HISTORY

: would not record an entry for this function.
S i

The queatibn hefe is basically one of open subroutines

ver;ul rlosed subroutines. The principal advantage of using

cloﬁed subroutinaes for making modifications, as implemented with
i

: i 141

i
Bt diliv s i ks s o UpE T TN e e R A e r————t

L

3

ADVISE, is that it is eusy to locate individual pieces of advice,

Pt S Ty TR TR T T SN TRy

and to change them, perhaps even by advising., It is also easieté
to contirue making modifications after the function is compiled.g
This may be outweighed by considerations of speed., Probably botg
options should be included in future systemé - provided that ‘

space is not an important factor. The user could then allow the

8

particulars of the situation dictate his choice on which method

to use.
» » »

This éntize.discussion has compared the efficiency of
interface modifications performed with ADVISE with those per-
formed editing the LISP function. There are, modifications
which do not properly fall.undet the heading of interface mod-

ifications, even though they could be performed that way. For

20 Ty e IR e A SRR A PN PR T

example, suppose FOO is a fuanction of two'arguments X and ¥,

and it is discovered that the order of these arguments has been
reversed in the definition of FOO. It would be possible to ‘
correct this by advising: exchange X and Y before FOO was enteted;
Obviously this is much less efficient than correcting the

function definition. The previous discussion compares the

advice method with editing FOO by inserting a'computation which

3
)
¥
v
£
3
i
i
b
&
i
!
3

exchanged X and ¥, and not with reversing the order of the

8, e

arguments in the definition. Comparing advising with the optimal

method ¢f modifying would brihg us into a discussion of what is
tha most efficient program for a partichlar task. 1 &m not

‘prepared to discuss this latter question.

Improving FLIP

FLIP is also the result of an evolutionary process. Since

it forms the basis for fhe translating and editing functions,

:%‘.:[
£
b

8 . ' 342

i

and is also used by the programmer directly, it is worthwhile

] o e — .-.W‘fmm\mﬁwﬁﬁ g e

')) L OO b JTF S SR
Gelbrairn - IRy S g 4T Sl S T IV U NI W TV 3 M At g 1 o RSttt mliiosian < L e -

other,

to concentrate efforts on improving it, 1In particular, two
additional semantic features in FLIP would bc most useful. These

are the multiple workspace and the depth search pattern,

Multiple Workspace

In most pattern-driven‘languages, the user matches a piece
of data against a pattern.- However, occasionally you want to
match 2 piece of data against another piece of data, according
to some pattern. For example, A ..atches B if whenever A js of
the form (x y z ...}, B is of the form ($1 x $1 y $1 2z ...).
Determining a match of this type involves a back and forth pro-

cess that cannot easily be expressed except in programs written

specifically for this purpose.

More generally, suppcse it is necessary to process two lists
uvsing FLIP-type of operations, where the processing must go on
simultaneously because the processing of one list affects the
For example, suppose you wanted to find the longest
commos iybqtring of two-strings. This type of problem car best
be solves'by allowing two workspaces, insjead of only one,

|
|

') I
Some syntactic and semantic problemeremain to be solved.

The user must be able to indicate under wﬁ%t conditions to
abandon processing one list and go to thei%ther - since nothing
can realiy occur simuitaneously. It may dlso be necessary to

specify more than one pattern.

Depth Search Pattern
When the user writes ($ A $ D $), he intends to find the

first A followed by the Yirst D, regardless of where it appears.

In COMIT, this presents no difficulty because everything is at

143

L e aieme? el

the same level. However, in LISP this pattern will not match
with the list (X YZ (ETAION) XY2 (SHRDLU XY 2).

To match with this list, one must use the pattern

($ ($AS) S (SDS) $:. However, this latter pattern will not

match with thevfiz:t Iisé. How can the user specify a matcb
that is to.occur at any depth? '
This problem is cf cbvious importance in searching list

structures. The user may not know at what depth a particular

 structure occurs, even though he may be able to specify a trans-

tormation on it. The depth search pattern would allow him te
write ($$ $1 2 2 $$) to search for three repeated elements, at
.any depth as indicated by the "$3°. The foumat (1 2 -1) would

then transform the structure, deleting the two tepet;tions.

?mproVing the Language Syntax

One obvious place to improve PILOT is in the transiatcer.
This device is a collection of tian;formations, eacn of which is
irrevocable, each of which operates with no information concern-
ing the others. Oftén, a translation will succeed or fail
dapending on the chance ordar to which two transformations are
appiied. In the current translator, this situation is avoided
by having the user segment parts of the input string with par-
entheseskwhenevgr there is a danger of misinterpretation.
However, this quickly becomes cumbersome. Moreover, it places

the burden on the user, instead of on the system, where it

should be.

£3,41 . :
Bobrow) has shown that in a limited semantic context,
that of algebra story problems, it is possible to relax syntactic
conventions considerably. The inrut to his STUDENT program is

144

e w e wna oy,

in the form of natural language, which the program “understands®

in the context of algebra story prublems,

Since the inputs to PILOT ~eoresent computations, it should
nim;,xﬁly be possible Lo relax the syntactic resirictions. It
an 1npu£ string does not parse, i.e., if it does not translate
into a recognizable computation - in our case a LISP function
with its arquments - then clearly something %‘s wrong. Somewhere
a transformation was applied that should not have “een. Before
the system complains, we should hive it back up and “undo® some

of the transsormacions it executed., By this ximple device,

many ambiguities could ke resoived.

For «xample, consider the input (TELL FOO TO INCREMENT X AND

(PRINT ¥)). The user intends this piece of advice to consist

of two operations: increnenting the variable x and printing the
~ value of y. However, this will translate into (TELL FOO TO
INCREMENT (AND X (PRINT Y)})), at which point the system complains.
This is because the /ND transformation, in the sense of
(A AND B OR C), operated before the INCREMENT transformation.
This AND, however, is intendéd to be the AND ip the
(To eee AND ... AND .,.) transformation. But, it is no£ recog-

nized because INCREMENT has not yet operated.

Of course, this situation could be rectified by having

INCREMENT operate first, perhaps by establishing a precedence on

transformations. However, as the number of transformations used

in the translator increases, the number of words used in two
or more different contexts, e.g., AND, will also increase. Unless
the user is constrained to writing AND1 and AND2 to indicate the

two meanings of AND, some device for tentatively trying a

145

Lo R

transformation becomes a necessity.

Extending the Language Semantics

onqramming languages are designed to allow the progtammer
to express the operations he wants the computer to perform in
a simple and concise fashion. However, often the programmer may
not know precisely what operations he wants the.compuggr to
perform. 1It is here that these languajes become inadequate,
for they presuppose knowledge on the part of the human, and just

facilitate transmission of this information to the computer.

Obviouﬁly when éhe user approaches the computer, he has
some problem in mind but it may be formulated only in terms of
the rcnults he wants achieved, and perhaps some of the goals
along the way. His problem is thus not only of transmitting
goals, but alsc one of defining ﬁore precisely thé process to

achieve these goals.

Newell'39] gives a spectrum of increasing specification as

it goes on in the human, which we can roughly picture as follows:
goal —s idea of solution —edetail of solution—ocomputer‘

At the far left, the human already has some way of recognizing ;
the adequacy and desirability of results., Clearly several prior
stages of fll-definition exist even further to the left. How-
ever, a long way also exists toward the right before the pro-
cedures for solving the problem are well enough defined to be

communicated to a computer using current prograrming languages.

146

SN L ST

S

PILOT represents one approach to this problem. It leaves

‘the language essentially unchanged; it is still a language of

procedure, i.e., of detailed instruction. However, the human
and the computer interact with very short delays, of the order

of seconds. The language is highly incremental, so that the

‘ hpman can introduce new semantic as well as syntactic features,

and it provides scme way of talking about the changes and modi=-
fications one wishes to effect., Using PILOT, the human, still
somewhat vague about just how he wants to proceed, operates ex-
‘perimentally. He constructs parts of programs that seem clearly
needed, tries tﬁeﬁ out, organizes them into bigger routines, etc.
In short, he finesses the restrictive effgcts of a language that
demands explicit detail in favor of trial, rapid feedback, and

correction.

However, this is not the only approach that can be taken
to this problem, An alternative one would be to try to change
the language, and move the communication boundary in the diagram
above from the right side of the place marked “detail of solution
to the left side. This approach is the 'plahninq language

(39) It attempts to understand the nature

approach” of Newell.
of communication between man and computer when he has only an
idea of a solution. How can man and computers communicate
before the man has worked out exactly what ne wants to do?

The solution: communication takes place in the language of plans,
The man formulates only a general plan, The computer fills in

the details and carries them out.
The situation is similar when we use high level languages

for macnine coding. The computer “fills in the details” of

the program, However, while translating from ALGOL or FORTRAN

147

W e ———r— TR

At

AT ey

LT P LT AT

peaTeisiey

A AR Sl

to zeline and improve itself.:

to machine language is algorithmic, to interpret a language of
plans is, to some extent, to solve problems.k That 1#, 'the
problem e dn developing a system that will take as input a

linguistié expression for a plan is essentially one of artificial

1ntelli§ence.'t39‘ The real problems for the computer'syltem

are attaining all the unattained goals that comprise the plan.v
Ta do this the systém must clearly be able to construct its
own subgoals, and perﬁaps even Se able to plan itself. This is
far from what goes on inside of the FORTRAN coﬁpiler or LI#P

f .

interpreter.

1 feel that this approach cgmplementn the one‘taken by
PILOT, and should certa{nly be explored. Any facility included
in PILOT for interpreting plans would §:eat1y aid the user.
Since developing a “planning language® seems to be an artificial
intelligence problem, perhaps the curreni PILOT aystém‘would be
helpful for this purpose. 1In this way, wa would be using PILOT

P,

Improving the Theory

The discussion of programming from the standpéint of block
diagrams presented in Chapter 3 gives little more than a

555533955 for introducing the conceots elsentiilbto PILOT. Much
werk remains to be done on defining more preci;ely what -is meant
by a procedure., and similarly, in what wuys does one modify
procedures. For example, we might start by attempting to for-

malize the block diagram by ialking about its primitiveé elements
and the allowable combinators.

MAdvances in this area would result in an immediate improve-

ment to PILOT and similar systems. However, perhaps of even

148

4

o et Lo TR LB 2 et T il

L i b s R G e

i T

ot

R R e T, e e FE S B

JRENIN

A = TP

+

i
i

i

yreater significance, is the influence such work would have on

@he design and development of future programming languages. 1f
;u could obtain a really good formalization of the ideas dis- ‘ j
%ussed in this thesis, then it would be possible to construct L0 . : ‘i
ianguages and systems which would drastically simplify the task

g! programming. And until such tims as these ideas are formal-

ized, systems such as PILOT will only be a potpourri of ad hoc, ‘ ' .
;lthouqh useful, subroutines. A

Iz
o
i

“oncluding Remarks

. This thesis has described an aéproach to the solution of

hard precblems by computers. Basically, this approach, actually

i‘philosophy, is: let the comput.r do it., Let the computer co ‘) f
anything and everything for you that is possible. The extra ‘ ' f
sffort involved in automating even difficult processes will be

returned in the freedom you receive to concern yourself with

the problem. B

%v PILOT is meteiy an example of this approach. If we were

éo implement a similar system on another machine, in another

Qtogrammlng language, the resemblance to PILOT prqbably would

%e only superficial, although the concepts of procedures,) . .
issential variables, and advising might still be useful, How-

4ver, the significance of PILOT is that it demonstrates the

?easability and desirability of this approach, It clearly shows

ghat it is possible to get computers to participate in, and

éooperate with, research efforts in programming toc a much greater

;#tent than is now being done. I think we are far from developing » j
;‘programming system that can truly be called symbiotic. However, |

?1L0T is a step in the right direction.

v ' ‘ é
149

v P ———— N

i.me R

Jo X

o Sy n’ et i e D D e e gl s o MW i 827 4 L St 1 b e S S

"""""»‘"ﬂm‘h-m‘dim-lvwr B o wme s bk T s W

H
i
3

APPENDIX 1

{

;

ﬁi SYMBOLIC DIFFERENTIATION IN LISP

i‘ Suppose that § is an expression to be differentiated with
frespect to the variablé v, where 8 is represented in Polish prefix
itorm, e.g., "3x; + 3yz + 3xz" is represented as (PLUS (TIMES 3 X Y) ;
(PIMES 3 ¥ z) (TIMES 3 X z)). The following function, DIFF, will | :
fdif!erentiate 8 with respect to y.

v
%
i

diffls;v] = | atom(s)—eleq(s;vl—el; TRUZ—e0]
jeq[f[a];PLUS]—~—cons(PLUS:mapliat(r[a]: XiIx)saiefie(xlsv)lls

‘eqlf{8);TIMES]~ cons [PLUS ;maplist{risl; X\ [
j cons{diff[fIx])v]) deletelt(x]);sris]]]]}]

{x]);cons [TIMES;
11 |

iTo make DIFF completely general, we must add a fourth clause:

i

;TRUE-——cons[PLus;mapzlsublis(pair!f-gradient-fta];r[s]l;
: fregradientefigl ris); [ixsy);1ist {TIMES £ ([x) ;a1 Lt
{£ly}svll))}

This clause allows us to introduce new operatiocns to DIFP
-by making their gradients available to it, via the function
?GRADIENT. The argument of GRADIENT is the name of an operation,
;a.g.. S8IN, POWER, ARCTAN, etc,, and its value is the gradient of

.* f{s) denotes the first element of s and r{s) the rest of s,

"in other words, the functions CAR and CDR; the valie of delete
[x;yi is the list y with the element x deleted; map2 is similar

- to maplist but operates on two lists In parallel; "“e" denotes

- function composition. .

151

3 mtl F i ST WDt A b Ml Y K g A st % 5, & "y i, S WP P il Mk T i b S e R N U T .mmL‘ ce. wvlhedod

that operation. GRADIENT thus plays the role of a table of

derivatives., ‘ B ?

T

)
N

i ; The form of each gradient is a pair of lists of equal 1engt§

the first list being a list of variables, and the second list the 7

pareial derivatives with respect to those variables, For examplg
if we represent xy by (POWER X Y), the gradient of POWER is ((x'f
((TIMES Y (POWER X (PLUS Y -1))) (TIMES (LOG X) (POWER X Y))}). |
b ' . ’ This says that the derivative of XY with respect to X is x¥-1,

‘ ‘ with respect to Y, xyloq X. similatly,'thergtédient o£>SIN Qould
Y " be {(X; ((COS X}}), etc. '

‘ ; . - If we restrict PLUS and TIMES to be binary operations, i.e.i
1 ‘ . represent 3xy + 3yz + 3xz as (PLUS (TIMES 3 X Y) (PLUS '
(TIMES 3 ¥ 2) {TIMES 3 X 2))), then the gradient of PLUS is

e

(X ¥) (1 1)), and the gradient of TIMES is ((X ¥) (¥ X)). 1In
this case, the definition of DIFF can be written simply as:
3
aitfis;v] = { fatomis) —Oqu(nv]-—-ovlg TRUE ~=0)
TRUE—e cons [PLUS ;map2 {sublis(pair(fegradiontef(e);;xr{sll);

fregradientef(s); ris):; A [{x;ylslist TIMES;f[x}],
aittl{flylsvilil]] '

oy

. T SO s AT

152

e T

¥ |
i b .
L -t W T S, S “ G T o i 5.7 o D S i - ¢ .) ““*MMN W B e

APPENDIX 2

USING PILOT

The PILOT system 15 a collection of useful functions centered
around the concept of advising, andlthe function ADVISE. fhis
function is the only one crucial to the operation of PILOT. All
of the other functions merely make it easier fér the user to
perform modifications. 1In this sense, these functions are not
essential to the operation of PILOT, although it is difficult to
see how PILOT would be usefﬁl, much less symbiotic, if these
Junctions, or similar ones, were not avaiiable. This is parti~
cularly true with the translation scheme displayed in Chapters
5 and é. The interface between PILOT and the user may and should
be tailored to meet his own needs and desires. However, since
the configuration and convent’ons I have found to be useful may
p;cvide a convenient starting poi;é, 1 shall describ~ them in
detail here. 1 must re-esyhasize that this configuration, and
these particular conventions, were adopted by me because they
seemed useful and intuitive to me. I make no attempt to justify

them, but merely present them to be taken at theii face value.

SYSTEM
Normally, when a person uses LISP, he directs his requests
to the EVALQUOTE operation, Computations are specified by
giving this operator a pair consisting of a function and its
argume&ts.‘ EVALQUOTE evaluates this pair, types its value, and

then awaits the next request.

153

§ AN . e R e R R L B TR S TR S

LA Erpe——— g

cinds . Aa

o

S A, e

e m weygi BT TRANSE WY T 4 TS ¥

e T R

B

S

e i

of hia work while 1nsideISYSTEM, although provision is made. for

To talk to PILOT, the'uset gives EVALQUOTE the pair "SYSTEM (
This calls SYSTEM, the top level function of PILOT, which is a funi
tion of no arguments. SYSTEM plays a role in PILOT similar to tha?

eoZ EVALQUOTE. It accepts pairs and evaluates them in much the saﬁg

fashioﬁ as EVALQUOTE. In fact, if the usar specifies a function
name and its arguﬁents,’the behavior of the two systems, PILOT and
LISP itself, is indistinguishabie. The user therefore could do alj
exiting by typing "ok." 1In this case, SYSTEM returns the value

NIL, and the user is back talking tc EVALQUOTE, or wherever SYSTEM

was called from,

The reason for introducing the function SYSTEM, is that the
action of SYSTEM can be modified by advice., 1In fact, the construc-

tion of SYSTEM is designed for easy modification. The procedures .

‘that read and evaluate the EVALQUOTE pair are separated irto two

subfunctions. SYSTEM reads the first member of the pair, and calls
SYSl, which reads the second member of the pair, SYS1 calls sysz,l
which then évaluates the pair. This'consﬁruction makes it easy |
to "drive a wedge™ hetween SYSTEM and SYS1l, oxr SYS1 and svéz, and

radicaily change the operation of the system.

¥hat I have done in the current PILOT system is to advise
SYS1, which has as its input the firut member of tﬁe pair, and
rormally reads the second member giving both to SYS2, that when
its arqument in'nonatcmic, inséeédrof ieaéiné the second membe?
of the pair and going to SYS2, it should instead call the
function DO. Thus if the user types "CAR :(A))‘ {two inputs), §
SYSTEM will type "A,” having gone through ihe nbrmal flow in j
SYSI and SYS2. But if the user types (TELL FOO IF X 1S LESS THAN

154

5’ :

Y THEN QUIT) (one input), this expression will be given as input

to the function DO, and SYS2 will not be entercd.

t is the task ot DO to uctermine and perform the operation

' specified by this input. DO uoes this by calling the functicn

TRANSLATE, which transforms the input list using a seguence of
FLIP transformations.
[
1f all goes well, the transformed list, the value of

TRANSLATE, will consist of the name of ajfunction and its argu-

il
" ments. In this zase, the first atom wil be a special symbol

*$." DO then treats the second atom ag the name of a functicn,
and the rest of the list as arguments. If the first atom is not
"$," DO prints out "1 DONT UNDERSTAND,* followeu by the offending

list, which may have been pértially transtformed.

TRANSLATE, the function which does the translation, is also

" conceptually very simple, It obtains a list of rules for the

‘translation prccess from the property lis® of the atom TRANSLATE,

~ under the property RULES. Thus these rules are not intrinsic in

the system, in fact, initially there are none, and thc user can

add them readily. TRANSLATE then calls p FLIP function TRANSFORM,

] giving it the rules and the input list. th is this latter

t:i?u:ﬁmﬂﬁ&?’“"!ﬂh#*"‘“”ﬂ“‘vhlrr-aunulla--u - ——

function which does most of the work in translating., TRANSLATE

also calls a function PARSE.

The entire structure of SYSTEM and its satelilite functions
is shown in Figure 5. The remainder of the appendix is devoted

to describing the action of TRANSLATE, and the TRANSLATE RULES,

in greater detail.

155

S TR Tk A O S L e P TR R P YR S S RWVREL - SIS - LI R CIVINERR TR Y I TR

R e T

© e

o

P e dor. - |

31VNIVA]

S3A

e SV LR v g g

1022]
ON
]

§ ¥3sanan
iS¥14

‘

1071d 40 14VHI MOVd §°914

SITNY AQ
WY0ISNVYL

o

00 11v) ,
=<uhmzw_ iSAS
ON

131visnvag

1IvI

» N0 « ONIdAL

A8 QIA3IHIY SI 1iX3 #

IONIINOD |

¥
P —
v
.
%
)
KNI Frren e et 17 2 SR VEESA S W e R e

R

156

TP

e

-

L
e

e T e et

TRANSLATE
TRANSLATE is designed to allew the user to specify an opera-

tion in what looks like a sentence, interspersed perhaps with
4

e e

some LISP expressions. The translation process operates by

:
#*

]

:
K]
A
i
P
i

collapsing sections of this sentence into LISP éomputations until,

e e o, o

if successful, all that is left is a single computation. 1In

this case, the form of the list will be ($ function-name function' {
arguments). For example, if the user wishes to modify the

furction FOO so that after it is evaluated, if its VALUE is not

a member of the list x, or if it is greater than y, FOO should : :
' return with twice its VALUE, he might type (TELL FOO AFTER IF ‘
| VALUE IS NOT A MEMBER OF X OR VALUE 1S GREATER THAN Y.THEN RETURN

? WITH (TIMES 2 VALUE)). This becomes (TELL FOO AFTER IF (NULL

B (MEMBER VALUE X))} OR VALUE 1S5 GREATER THAN Y THEN RETURN WITH

; :

) (TIMES 2 VALUE)), and then (TELL FOO AFTER IF (NULL (MEMBER VALUE
: X))} OR (GREATERP VALUE Y) THEN RETURN WITH (TTMES 2 VALUE)), and

then (TELL FOO AFTER IF (OR (NULL (MEMBER VALUE X)) (GREATERP

. VALUE ¥)) THEN RETURN WITH (TIMES 2 VALUE)), and then (TELL FOO
; AFTER IF (OR (NULL (MEMBER VALUE X)) (GREATERP VALUE Y)) THEN
. (LIST (TIMES 2 VALUE})), and then (TELL FOO AFTER (COND ((OR

(NULL (MEMBER VALUE X)) (GREATERP VALUE Y)) (LIST (TIMES 2 VALUE))) b
(T NIL))}), and finally ($ SYSTEM1 FOO APTER (COND ((OR NULL ‘ : i

(MEMBER VALUE X)) (GREATERP VALUE Y)) (LIST (TIMES 2 VALUE)))

¢ (T NIL))). : . : 5

1f the user had typed any of the intermediate expressions as
input directly, the end result would have been the same. 1If he
added a rule which transformed (... YWICE xxx ...) irto (TIMES 2
?; xxx) , he could have written (TELL FOO AFTER IF VALUE 15 NOT A
MEMBER OF X OR VALUE IS GREATER THAN Y THEN RETURN WITH TWICE

VALUE) . ' ‘

- 157

= T

s e,

L e L

lere are two processes fhat take place insidec of TRANSLATE.
The major one, of course, is the transfprmation of the input list
according to TRANSLATE RULES. However, since TRANSLATE is called
from 1551de of these rules, at various levels, to perform
translaiions on parts of the input list, a parsing feature has
been added so that where thg user wishes to express a LISP com-
putation, because he has not included a translation rule that
will handle it, he can do so with a minimum of parentheses. - I

shall describe this operation first because it is fairly simple.

PARSE is a function which utilizes information about the
number of .rguments of a function is order to insert'pérentheses
in an otherwise unstructured list, For example, PARSE transforms
(CONS CAR X CDR ¥) into (CONS (CAR X) (COR ¥)). PARSE has no
effect on lists which do not begin with function names, or for
other reasons are not appropriate for parsing, e.g., they are
already parsed. Fer those lists which dé look like they should
parse, buf wo ﬁot, PARSE gives appropriate errors. The applie
cation of parsing permits a vast treduction in the number of
parentheses the user must'gmploy; and greatly inéfeasesbthe
readability (and writeability) of LISP expréssions. Since PARSE
is called from TRANSLATE, any expression which will normally be
translated will also be parsed. Thus, in the previous example,
the user could write {TELL FOO AFTER IF iOR NULL MEMBER VALUE X
GREATERP g Y} THEN (LIST TIMES 2 VALUE)), and the end result would

be the same,

TRANSLATE RULES
TRANSLATE makes use of a FLIP function TRANSFORM to trans-

form the input list. The input to TRANSFORM is an item to be

transformed and a 1ist of rules. Each rule consists of three

158

) .
PP Y SO TR ot 2 iat® A Wy b . s

PEIII SR RN

TR T

Iparts, a pattern for matching, an (optional) format for con-
structing, and an (optional) label for transferring control.

If the input matches the pattern, it is transformed according

. to the format, if any, and control goes to the laheled rule,

i~ or slse to the next one. If the input does not match, control

goes to the next rule regardless. TRANSFORM thus acts very much

‘- 1ike METEOR, and allows one to write little COMIT-like programs

using FLIP. Exit is achieved either by "dropping off" the end
of the list of rules, or by going to a fictitious label EXIT.

' One can also return to the top of the list of rules by going

‘to TOP. With my translation scheme, this is done after every
successful match-construct operation, except those which produce
the special "$" asymbol indicating the transformation process is
complete, For these, the transformation process is terminated

by a call to EXIT,

The philosophy behind each rule has been that where there
is no ambiguity, 1 should be allowed to suppress parentheses.
For example, there is a rule which transforms (X 1S NULL) into
(NULL X), and a rule which transforms (IF xxx THEN yyy ELSE zzz)
into (COND (xxx yyy) (T zzz)). Thus (IF (X IS NULL) THEN yyy
ELSE 2zz) becomes (COND ((NULL X) yyy) (T 2zz)). However, I can

also write (IF X IS NULL THEN yyy ELSE 2zz), because the 1F-THEN

I should mention that when the user writes (IF X IS uULL
THEN yyy ELSE zzz), instead of (IF (X Ié NULL) THEN yyy ELSE zz2),
he is sacrificing computation time for ease of writing and
reading. This is because the translator will try to transform

(NULL X) in (IF (NULL X) THEN yyy ELSE zzz), while making the

159

rule will not be applied until "X IS NULL" is changed to (NULL X)}. -

W V——— LY

f
k

Tt e e 0 o LY .

A1+ ot g PO Y L AT Shal LA

IF-THEN transformation.' However, for those rules where exit

is normally achieved, with :he special symbol "$" at the head :

of the list, more meaningful errors will be found and communicatedz

to the userrif he does not use extra parentheses. -£
For example, I have a rule which transforms (TELL FOO xxx)

into ($ SYSTEM1 FOO BEFORE xxx)}, a call to one of the advising

functions. If I say (TELL FOO (IFF X IS NULL THEN QUIT)), this

will become ($ SYSTEM1 FOO BEFORE (IFF X IS NULL THEN QUIT)).

Although 1 intended this piece of advice to be transformed into

a COND, it wasn't because it contained IFF, instead of IF. How-

ever, the advice (TELL FOO IFF X 1S NOLL THEN dUIT) would not

be transformed into a list with a *§* at the front, and DO would

tell me about the error at this point:- instead of LISP telling

me later that IFF was not a bona fide function. At that point,

I would have to figure out where the error came from, why, and

. what should have happened, whereas with DO I would know immediately

One further point: occasionaliy, you EE§£ use extra paren-
theses ~ to indicate precedence. For -example, (A AND B OR C) is
transformed into (OR (AND A B} C). To make the AND relationship :
be the primary one, one must say (A AND (B OR C)}. Normally, this :
cannot be avoided, because you have to decide which will take
precedence - AND orVOR. However, in some cases, by being clever
about the particular translation rule; you can rule out most of
the cases where extra parentheses would be necessary. For
example, I have a transformation which takes something of the

form (DO xxx) into (PROG2 xxx NIL). This is for ADVICE which

* This could be avolided by having TRANSLATE recognize when an
expression had been translated previously.

160

w

Bhould be executed, i.e., the xxx, but not affect the flow of

‘computation, hence the NIL. However, if you type (DO IF X IS
NULL THEN ...), you would get ((PR0G2 IF NIL) (NULL X} THEN ...),

?hich is nonsense, But, if this rule required xxx to be non-

?tomic, it would not operate in this case untll after the IF
In
i

‘rule had operated. Thus, you obtain the correct result: (PROG2

HCOND ((NULL X) ...).
?} Of course, with a more sophisticated parsing scheme, one
7¥ould back up from incorrect transformations, and much of this
?ould not be necessary. However, TRANSLATE is extremely ad hoc,

;nd it is interesting that it can do as well as it does.

” - [» .

ﬁ\‘ 1 shall now describe each individual rule. For reference,

; complete list is contained in Appendix 3., In this discussion

iulcs marked with "*" differ from the corresponding ones actually

in th aystem es listed in Appendix 3, although in all cases .

both perform identical operations. The difference ‘s usually a .
iQuestion of efficiency versus intelligibility. The rules in

;he system are more efficient, their counterparts here more

understandable.

SYSTEMI (SYS1 (COND
(ATOM X) NIL)
T (LIST (PRIN

T (DO X)}))) BEFORE)

I .
%k D‘This is the initial modification to SYS1 that causes it to
;all DO in the event its input is nonatomic. SYSTEM1, as
ae-cribed earlier, has three arguments: the name of the function
#a be wodified, here §YS1, the expression that constitutes the

}dvice, which is the COND, and the place where the advice is to

be inserted - BEFORE,

161

rr— Y) T

a‘}‘w“vm&t’-'w*-%fwut- e DAY Ny e R, i ¥ L S PR VRTINS TR R 1 s o TU SR L IR SRR S A e h AR L N R

R m——————rTY

LI

ADD NSLATE $1 AS (EITHER
NOT ATOM))

} ($ ADD (2 (EITHER . i
) TRANSLATE RULES) EXIT) TRANSLATE RULES) E

TR
/

—3

i f , » : . This input adds the first_ﬁranslation rule to the property
E;_;-.‘.}: . ; ' 1ist of TRANSLATE under the property RULES. The rule is ((TRANS-
4 R : LATE $§1 AS ... EXIT) and transforms an input such as (TRANSLATE :
,; ') ,,j ‘ . Xxxx AS yyy) into ($ ADD (xxx yyy TOP) TRANSLATE RULES). 1If the
| nE kuser wishes to specify a label for transfer it‘the xule’matches,
. he- can say (TRANSLATE xxx as yyy FPOQ) which is transformed into
e ‘ ' (S ADD (xxx yyy FOO) TRANSLATE RULES). This rule is a device to

enable one t¢ add other rules without calling ADD specifically.

Note that if this rule matches, no further transformations occur,

i.e., if one says (TRANSLATE xxx AS yyy), it becomes (5 ADD etc..)

and an exit occurs, as specified by the label EXIT.

L o (TRANSLATE
| | (TELL $

(FIR
(s
(s

ITHER

1

ATOM) FIRST)
AToM))
$1)

1
IRST
1/
1/
)

AS
{$ (EITHER
SYSTEM3)
svsren:§
)

o
il

SYSTEMI
- . . SYSTEM1
gi NORMAL))

2 (= TRANSLATE -1) (EITHER

1 '
(= NORMAL))) 3] o »

This rule has been entered using the (TﬁANSLATE XXx AS yyy

EXIT) format made possible by the previous rule. Basically, once

the input has been reduced to the form (TELL xxx zzz), (TELL

7 xxX yyy 22z), (TELL xxx FIRST zzz) or (TELL xxx yyy FIRST zz2),
;: | translation is complete and SYSTEM1 or SYSTEM3 can be called.

f‘ ; 162

5 -

!

|2 |

¢ - - i - 3 = ¥ , Hhde
1 ' |

: s rtiie e S @b e g™ A g o L
Y it © 2 e el WY W 1 NIV s U T 7 U Sl AR e W W S s e 3 . L e e B © by

e iy ST

L o W

(TRANSLATE
o s {-- END (BACKTO BEG) $1 § END --)
T (== (= TRANSLATE -3) --))

While it would be possible.to make TRANSLATE be completély
recursive and tear apart every list structure looking for scme-
thing“recognizable, this seemed to be a slow and inrfficient
process., ‘In pgrticular it penalizes the user for material al-

- ready translated, i.e., legitimate LISP expressions. A probleﬁ
arises, however, when it is desirable to have something be tra£s~
lated that is inside of an expression that itself normally would
not be translated. BEG and END are here introduced as pseudo-

' parentheses to finesse this situation. By using BEG and END in

. place of parentheses, you can write everything at the same level

80 that translation will occur. This particular rule locates

; the first END, and then backs up to the first BEG before it,

80 that one cean nest BEG's and END's,

i (TRANSLATE
i (-- DO $1 /7 (NOT ATOM) --)

a " AS
i (-~ (PROG2 (= TRANSLATE 3) NIL)} --))

Frequently one wishes to perform a L1SP coméutation in
advice without disrupting the normal flow into or cut of the

function in question. Since the ADVICE function will interpret

a non-null value as a signal to bypass the function, this compu-
tation is embedded in the form (PROG2 xxx NIL), where xxx is the
tdesired computation, PROGZ i3 a LISP function which evaluates

[

" both its inputs and returns the second one, here NIL. This

s

rule transforms DO xxx into (PROG2 xxx' NIL), where xxx' is the

translation of xxx. Note that xxx is restricted to be non-

e Ay

atomic (sz2e previous discussion, page 161},

v 163

e B AT

v . . - -, T T PV o . v

R R
T Y

e T

y
4

A R o e R G B T e oy

{TRANSLATE
(-~ BIND (EITHER
$1 / (ATOM))
$1)) 10 81 --)

IROTEE PR SRS

3
’ (-- (ATTACH (CONS (EITHER ~ ; J
- CONS QUOTE 1)) :
= TRANSLATE 1))} (= TRANSLATE 5)) (CDOR :
- HISTORY) T TN . ‘
) --)) :
This rule allows the user to create and bind a‘new variable
to some value; the binding will hold until thé current function
is left, This is dore via a call to ATTACH giv1n§ it the name of
the variable and its value, and (CDDR HISTORY) which ie ;he
appropriate place to ATTACH it, i.e., just after the function's
" name. One can specify the variable name directly or as a result
of a computation.
(TRANSLATE
{-- SAVE %1 on $1 --)
(-~ (SETQ 5 (CONS (= TRANSLATE 3) 5)) --})
This transforms (... SAVE X ON Y ...) into (... (SETQ ¥
(CONS X Y)) ...) with appropriate translations.
{TRANSLATE }M
‘ s'(-~ POP $1 --)‘! ;
(-- (SETQ 3 ‘CDﬁ 3)) =)
- B " The inverse of the above operation. :
(TRANSLATE | !
{-« IGNORE ..) :
(== NIL =)} ;
164
I T S ST W I i 3 T TR

FIRT N —

This rqle allows the user to use IGNORE for NIL. IGNORE

has jintuitive meaning when used in the context of advice, e.q.,

' (IF X IS NULL THEN IGNORE) means if x is null then go on with

R gy v pa s i

the rest of the computation.

(TRANSLATE
(== QUIT --)

(-- (LIST NIL) -))

Similarly for QUIT and (LIST NIL) -- do not enter this

procedure but instead return with NIL,

(TRANSLATE
(x IS § (EITRER
Y MEANS)
MEANS)) $1)

(s ?222 1S PATTERNS (3 (EITHER

.v) FORMATS i-l {QUOTE (= TRANSLATE
(/; 2)))§EITHER (QUOTE (= TRANSL&TE -1)))

This rule mekes it possible to add definitions such as

. (X IS GREATER THAN Y MEANS GREATERP), (X IS A NUMBER MEANS
NUMBERP) , etc., so that (IF X 1S GREATER THAN Y AND 2 IS A

NUMBER ...) becomes (IF (GREATERP X Y) AND (NUMBERP 2) ...).

The pattern for each transformation is stored on the property

list of the atom 1S under the property PATTERNS. The format

ﬂ is stored under the property FORMATS. "he actual transformation

ﬁ is handled by the rule below:

165

(2

(%

-,

1 4 e ey g

e A T AET et ST AT | SR N ETT

i il
. i {TRANSLATE
L i (-- 31 IS (EITHER
] ‘ . : (NeT)
N ’ { e=) (EITHER
. 1 A (= GET IS PATTERNS)) -=)
¥ ' S
3 ‘ d (-~ ((EITHER
¥ {NULL ((EITHER
| (/1 -2)
i (= GET IS FORMATS))))
: ((EIT?E
1 = GET 1S FORMATS)))) --h .
?{;,
% This rule handles the transformations of both (... xxx IS .,
f and (... xxx IS NOT ...). It gets the appropriate patterns from
g PATTERNS, and transforms according to formats on 1S FORMATS,
i {TRANSLATE
: {(-- T0 (EITHER
SR ({($1 7 (NOT FUNCTIONP) %))
v , : . =e) REPEAT 1 $1 AND) $1)
b (-- (PROG (EITHER
i (REPEAT (QUOTE (= TRANSLATE 1)))
% {= TRANSLATE -1))))
ﬁ‘ (.ss TO xxx AND yyy AND 22z ...) becrmes (... {(PROG NIL
%J XX YYy 222) ...) as a result of this rule. This is so the user
1‘;
% ~can specify a number of operations in one piece of advice. 1If
?‘ PROG vafiablea are necessary, they can be inserted just after the
i TO. The list of PROG variables can be distinguished from a form
i _ ‘ ‘ because it does not begin with a function. Thus (70 (x y z)

i : EEE xxx AND yyy AND 2zz) becomes (PROG (x y 2) xxx' yyy* zzz').

(TRANSLATE . :
($ { / éﬂgi%) (REPEAT IF $1) (EITHER ‘
--) (EITHER ?
(EXD --) :
.) ;
AS ‘ i
(-~ (COND ‘
REPEAT ((- TRANSLATE 2) (= TRANSLATE 4)))
" EITHER)
i 166
j . - - o w:fﬁl‘..—‘F-'EE’.-........’H.!"!llﬂ.n..!.!_’_’.;‘gumﬁmpw* = ady e

{ T (= TRANSLATE %

T NILY))) g

))) .
EITHER
(2

..))

This rule translates IF THEN statements into conditionals.
The form of the statement must be IF $1 THEN $1 IF $1 THEN $1 etc . o
N rd

terminated either by END, or by the end of the list. This is to
Thus (IF POP X

help the user catch errors at translation time,
THEN QUIT) becomes (COND ((SETQ X (CDR X))} (LIST NIL)) (T NIL)),
but (IF POPP X THEN QUIT) does not translate. Note however that
both (1P (POP X) THEN QUIT), and (IF (POPP X) THEN QUIT) will
satisfy the IF-THENVrule. At some later point, however, a LISP

" error will occur because of POPP.

This rule also allows the user to insert an optional ELSE

L E clause at the end of the IF-THEN statement. 1f none appears,

{T NIL) is used.

The appearance of the NILL in § / / (NILL) causes the
rule to fail if the first IF-THEN is not correct. This is to

avoid partial transformations of IF-THEN clauses inside of a

longer statement, i.e., IF X IS NULL THEN Y IF A THEN B ELSE D

} becoming (IF X IS NULL THEN Y (COND (A B) (T D)})

o {TRANSLATE
| (- IF $1)

{-- (SYSTEM& (= TRANSLATE 3))))

Lo Occasionally, if a computation is not NIL, you want to
return with that computation. Essentially, you want to write
{

{IF xxx THEN xxx). However, this will cause xxx to be evaluated

twice. One fincsses this by writing simply (IF xxx), which

167

T A e TS T R EITIRI B { B T YR T AR W | | S WS A . ey

4

| ;
LllllllI-llllllllllllIlIllllIllIlllllIlllllllllllIllIllllllllIllllIllllIIllIlIIIIIIIIIIIIlIIlIlllllllllllllllllllllll

o e e T TR IR

ez A

Bt

AIRATRT, L T O A TRSHE S ST AT GO W e e

ez

N

g i

R e S

T AT e e

f

H

-

results in a call to SYSTEM4 which performs the appropriate acti%

(TRANSLATE E
(-- AND (BACK 2) (REPEAT $1 AND) $1 =-) - |

s (5- (AND (REPEAT (QUOTE (= TRANSLATE 1))) (= TRANSL;'
)) =) | ﬁ

;
i

This rule handles expressions such as xxx AND yyy AND zzz .,
which become (AND xxx' yyy' zzz'). It locates the first AND and:
then.backs up. There may be some confusion between this rule

and the rule which handles TO xxx AND yyy ... However, 6ne can

always use BEG and ENG or parentheses,

{TRANSLATE '
(-- OR (BACK 2) (REPEAT $1 OR) $1 --)

(+- (OR (REPEAT (QUOTE (= TRANSLATE 1))) (= TRANSLAT
-2)) --)) '

3

Similar to above for AND. Note that (A AND B OR) becomes -
{(OR (AND A B) C), because the AND rule is before the OR rule.
Tc produce (AND A (OR B C)) one writes {A ZND (B OR C)).

(X IS A MEMBER OF Y MEANS MEMBER)
(X IS A NUMBER MEANS NUMBERP)
(X IS (EITHER
AN ATOM)
ATOMIC)) MEANS ATOM)
{x 1S GREATER THAN Y MEANS GREATERP) .
(X IS LESS THAN Y MEANS LESSP)
(X IS EQUAL TO Y MEANS EQUAL)

(X IS NULL MEANS NULL)

IS RULES in the system,

168

(TRANSLATE
s (-~ RETURN WITH $1 --)

(== (LIST (= TRANSLATE -2)) --))

R

If one wishes to return with xxx from a function, the advice
; should actually yield (LIST xxx)., This rule transforms

{coeo. RETURN WITH XXX ...) into (... (LIST xxx} ...). Thus QUIT

is the same as RETURN WITH NIL.

(TRANSLATE
(DEFINE $1 (EITHER
g(rsxpa) {$SET FOO (QUOTE -1)))

$1 ($SET FCO (= LENGTH {= CAR -1
(SSET FOO (QUSTE 0)))) (AS --)))))

S
{$ DEFLIST (({(= CAR (= PUT (= FOO) (= CAR 2)
ARGS)) (LAMBDA
(EITHER
(L A))

NIL)) (= TRANSLATE -1)))) (EITHER
{FEXPR)
y (EXPR;
¥ (EXPR)) })

This rule is to allow the user to avail himself of the

- translation process in defining new functions; you can write

; (DEFINE FOO AS). 1If nA arguments follow FOO, NIL is

! supplied. If (FEXPR) folles FOO, (L A) are used as arguments
and DEFLIST is called withw,EXPR as its second argument. Other-
'% wise EXPR is used. The reﬁerence to PUT in the format puts

i the number of arguments in the function being defined onto its
propérty list so that PARSE can be used even though the function
is not yet defined, e.g., in (DEFINE MEMBER (X Y) AS IF X IS
EQUAL TO (CAR Y) THEN T ELSE (MEMBER X CDR Y)), FARSE would

know how many arguments MEMBER had.

169

|
»u:rwm’mwwmw- s e e e

4 |

v
3

4
g Y A AT A n TN de i MR PP R S A B 3 Y O 3 s S+ e A, S~ Ml - W -
N .

{TRANSLATE
(~- INCREMENT $1 --)

AS
(-- (SETQ 3 (ADD1 3)) --))

Transforms (... INCREMENT Xxxx ...) into (... (SETQ xxx
(ADDl xxX)) ...).

{TRANSLATE
{-- (EITHER
SEARCHF)
COUNTF)
SEARCHP)
LISTP)

igguggp)) $1 $1 7 (NOT ATOM)} (EITHER

AS '
(-~ (2 3 (= CONS QUOTE 4) HISTORY} -1))

SEARCHF, COUNTF, SEARCHP, LISTP, COUNTP are functions useful
in problem solving. SEARCHP, LISTP, COUNTP all take a list, a
predicate, and an ALIST, as inputs. SEARCHP searches for an
item that satisfies the p.edicate. LISTP listg all items that
satisfy the prédicate. COUNTP counts the number of items that
saticfy the predicate., SEARCHF and COUNTF are similar except
they take FLIP patterns instead of predicates, and therefore
you can express relations between elements in the lisﬁ. The
ALIST is used for evaluating free variables. Since in the
most frequent use of these functions you specify only the list
and the predicate or pattern, this rule will quote the predicate
or pattern, and supply HiISTORY as the ALIST. (LI1STF, another
function, is not handled by this rule because it requires an
extra argument that the other funciions do not take.} You can

specify an ALIST yourself, in which case this rule will not

match.

170

“ (TRANSLATE |
| (-~ BREAK $1 --) : y
~ As | |

(-- (BREAK1 NIL T (ADV!CE) ONS * (COND ‘ :

{c
é E? (CAADR HISTORY; VALUE) (CAADDR KISTORY))
CAADR HISTORY))) (CONS TYTAB (= CONS QUOTE 3) ’ :

-

This rule allows you to insert a BREAK inside of advice.

i This is done via a call %o the function BREAK1 described earlier.
" SREAKL prints as its meisage the name of the function, which it

obtains from the history list, and the message corresponding to

the $1.

ADD (CHANGE TRANSLATE RULES)

(TRANSLATE
(CHANGE ‘% (EITHER

($1 7 (ATOM))
==) (REPEAT ((REPEAT $ $1 / (NOT ATOM)) $)))

: AS
; ~ ($ EDIT 2 (EITHER

1
3 (= NORMAL))) ((REPEAT ((
: = TRANSLATE 2)) (/C 1 2)

TS T T gt gt e o

REFEAT M (/C ;
}) stopP)) EX!T)))

‘ This rule result allows you to call EDIT giving it a

5 sequence of charnges. You can include jitems to be translated

in these changes, e.g., (CHANGE FOO (INSERT IF X IS A MEMBER OF
Y THEN QUIT BEFORE SAVE X ON 2)). The regquest “ADD (CHANGE
TRANSLATE RULES)" serves to label this rule so that other rules

{(below) can transfer to this label instead of to TOP or EXIT.

in

-t R e —— Ay}

T S L T I IS oy - IR TTIRS B 5T SRl = vovw oy P 23, -

j

Wi] WL st s W o n] ¥ iyt < o TN oy SR BTl | i A aaiee ¢ et~

--------l--III---IIlllllIIllllIllllllIlllIII-IIIIIIIlIIIllllllllllllllllll.llll

T oL - R . 0 M e RS Y 2R A _‘.\L . S

3
3 ; (TRANSLATE
4 : ; (TELL sx EITHER
§ i (s1 7 (ATOM))
’ f : -=) {(EITHER
' serons)
AFTER)
i"?TEAD 0F)) (EITHER
1
$ ADVICE))) (CITHER
$1 /7 (ATOM))
$1)))
AS
(s tg;T 2 (EITHER
(= NORMAL))) ($SET FOO (== (EITHER
1 {; 42) .
3 (= TRANSLATE 1) (BACKTQ ADVICE) url)) 1))
L $SSET FIE
¢ (== (EITHER
v -1 :
%‘ i(Aozxcg (** (= TRANSLATE 1))))))) (((Exrnsn
ko /
3 §xnssnr * (g rxe;; BEFORE (** (, roo
3 INSERT {** (= FIE)) AFTER (** - F00)
" (REPLACE (** (= FOO)) WITH *' = FIE)
g STOP))
ﬁ .
% The CHANGE rule is designed primarily for editang. When
; . the user wants to insert advice at some point, other than the
i
3

beginning or end, or to replace one piece of advice with another,

he uses this rule so that he does not have to specify the entire

editing sequence. If the user specifies (BEFORE SAVE X ON Y

ADVICE), this becomes (BEFORE (SETQ Y (CONS X Y)) (BACKTQ ADVICE)

UPl) (each piece of advice is a list headed by the atom ADVICE).
If the user writes just (BEFORE FOO); EDIT will look for the

label FOO instead of for a piece of advice.

e g i e S P T TP T T Y
o R R AT R TR B R 5 - ¥ i

ropa R

e

172

PR

T A R L

R e st e s e,

{TRANSLATE
{USE (EITHER

‘ $1 FOR $1 $1)

P 141 FOR $1)

i $1 $1 FOR $1 $1)

i $1 $1 FOR $1)

b $1 31;) (EITHER

F BgT’S)

: (CHANGE (/T 2 1) (EITHER

(= NORMAL

| (= NORMAL

:

g 25) (SETQ NAME ($* QUOTE (E. HER
: 52

; 1))) (SETQ VAL ($* QUOTE (EITHER
¢ (= NORMAL))

}. 5)

i, i' NORMAL;;

o (= NORMAL)}))} (EITHER

- (2)

i NIL))3}

This rule facilitates shifting advice from atom to atom and
property to property. The various options are included to allow
f? the normal mode to be suppressed. The USE instruction may also
have a sequenc2 of changes following it as in (USE xxx yyy BUT
(REPLACE ...) (INSERT ...)). This rule transforms the input into
the format for CHANGE and then goes to that label. The SETQ
NAME and SETQ VAL are instructions for EDIT telling it where to
V . put ghe edited list after it is finished.

(TRANSLATE
{-- (EITHER

MAPCAR) :
MAPC) $1 (51 7 (NOT EQ FUNCTION)

AS

173

j

e L T A Y SN GO St P - gl . e " SCCE IR bttt A rntr A N wl. .o - Flre W et el e gy e W

(-- ((EITHER
(/1 2 1)

, (MAPLIST)

: . : MAP)) (= TRANSLATE 3) (FUNCTION (LAMBOA (X)

1 B ! . EITHER :

4 / 5 « TRANSLATE (/T 8))) g
= SUBST (CAR X) X (- TRANSLATE (/T 4)))

Rl

Frequently, one would like to process a list and petfotm j
LA :) some operation,on each member of the list. The function MAPLIST,
for example, has two arguments, a lisg, and a function., 1t
constructs 2 new 1list in which each element is the result of

F ‘ ‘ applying the function to the corresponding position in the old

‘ list, e.g., (MAPLIST X (PUNCTION (LAMBDA (Y) (Abm.'(cmx I},
increments each element in a list, This rule is designed to make
it easier to call such functions. It supplies the FUNCTION and
LAMBDA, and also translates the functional argument. It also

allows the user to specify whether the function is to be applied

to the remainder of the list, as in MAPLIST and ﬁAP (MAP only
differs from MAPLIST in that it does not construct a new list),
or the next element in the remainder of the list, as'in MAPCAR
‘}_“ o K and MAPC. Thus MAPC FOO (PRINT CADR X) becomas MAP FOO (FUNCTION
- (LAMBDA (X) (PRINT (CADR (CA&R X)}))).

(TRANSLATE
(NA?Elgl $ IN 31 (EITHER

s
(CHANGE -2 -1 (FLIP ;
. $ (= TRANSLATE 3) (BACKTO ADVICE) uPt’ 33 '
{QUOTE 1) (’OUOTE =) NAME1 (QUOTE -2) 2) (QUOTE -1})
) N
‘This rule allows you to locate a particular piece of advice

and define it as a function, so that the advice itself may

: 174
:

. t .
1 ‘ . B p—
i e S S Y Wi O e e SIS L SRR 1w 1 . T oo & o SO T Wl PR g Rt) il IR

. subsequently be advised., This is done by calling EDIT to locate
the advice and replacing it with a call to the new function,

. which is then defined. Thus (NAME FOOl SAVE X ON Y IN FOO)
becomes (CHANGE FOO (FLIP ($ (SETQ Y (CONS X Y)) (BACKTO ADVICE)
I;UPI $) (1 (= NAMEl -2 FOOl) -1))), and control goes to CHANGE

| label. When EDIT is called, NAME1 will define FOOL as the old

advice,

(DEFINE NAME1 (X Y) AS CON5 * ADVICE DEFINE LIST LIST Y
LIST ' LAMBDA NIL CODR UNFLATTEN X)

g T s

ST (((NAME1 (LAMBDA (X Y) (CONS (QUOTE ADVICE) (DEFINE
(LI?TE;P(%lST (QUOTE LAMBDA) NIL (CDR (UNFLATTEN X))
R

e
=

i This is the definition of the function NAMEl used in the

above rule. It defines 2 piece of advice as a function. The

value of NAMEl is (ADVICE name), which will be lubstitdted for

? the original pléce of advice.

(TRANSLATE
; ((EITHER
: BEFORE $1)
: AFTER $1)
$1)

151
(s1)) ° & -2y
(TELL (EITHER
21 , v
2 1£ :
18 : . .

NORMAL))) Do --))

Thil rule allows you to write (AFTER FOO : INCREMENT X),

I, instead of (TELL POO AFTER DO INCREMENT X).

;
: 178

.. :
Pl R T T ISP S Rt . WM ——— v . - v gy

-
| i

L 7. s o ‘ —— . -
i W Lebsiy - e b A N Rl ST L M i T 0 b ans T r il o M R L RS X T b ek g s g e o A
. . L IR |~"~’

4------IIl-I--IlllllllIllllllllll-IIlllllIlIIIllIIIIIIIIIIIIIIIIIIIIIIIII

e e Al L

T e Tt

ey

O

e i e P

g e S T IR I S SRt T e

T —

-

|

i

!

(CHANGE SYSI (REPLACE PRINT UP! HITH (PROG gY)
IF (ERSETQ PRINT DO X) -
THEN {TERPRI)

1F PROG2 PRINTRED ' (EDIT OR FORGET IT) SETQ Y I
(SETQ Y (KDFLX)) IS EQUAL TO ' EDIT THEN (EDIT NIL X NIL
IF Y IS EQUAL TO * PILOT THEN (PROG2 SYSTEM X) IIF (TRANS F
Y GET ' EDIT ' RULES) IS NOT EQUAL TO Y THEN (ED T NIL X
Y ' STOP) ELSE V) |

THEN iSYSl Y)
ELSE (PRINT ' OK))).

This operation modifies the original advice on S¥S1, which
told it to call DO. The intent is to cause the system to allew
the user to correct errors detected inside of DO. 1f an error
occurs, the value of ERSETQ will be NIL, and (EDIT OR RGET IT)
is printed.’ The user can then modify his input, without re~
typing the entire stri 9. The user may type EDIT, to utilize
EDIT bn the input. A angle editing operagion, can be;typed
and will be recognized as such because it will be trangformed by
EDIT RULES. This editing operation will then be perfo ed. The
user can also type PILOT, in which case the system is called
recursively. Thia allows the user to make modifzcatio#s, and
return for another attempt at translating the input which caused
the error. This feature of "remembering™ the last inp@t it an
error occurs is extremely useful and was suggested by érofessor

Minsky during a sessiorn fvith PILOT. It is illustrated%iﬂ the

example below.

{(x is negative means minusp)
(1S RULES) |

i
|
!
i
i
{
cset (print *T*) |
T4 i
- |
{define abs (n) as §
if n is negative then complement of n, ;
else n) 1
1 DONT UNDERSTAND:

(DEFINE ABS (N) AS IF (nrnusp M) THEN COMPLEMENT OF
s*+ ERROR CALLED |
(EDIT OR FORGET 1T) |

176

- Tal Jl LT R,
; . T Vg e M Wl e
Ty) AT e ST 4P AL S SN B I 3 A P e 1 S A 4 - »

Wi gt ot e, v e

— o
e

e
B e VRl W E L gttt AR e A e Y ot il ARG e St T L e © LR R s

p;;ot (translate (- complement of $1 -) as (- (minus &)

TRANSLATION: (ADD ((- COMPLEMENT OF $1) (- (MINUS 4)
=) TOP) TRANSLATE RULES)
(TRANSLATE RULES)

ok
TRANSLATION: {DEFLIST ((ABS (LAMBDA (N) (COND
(MINUSP N) (MINUS N))
TN))))) EXPR)
{ABS)

EDIT (SYS1 BEFORE ((REPLACE PRINT UP1 WITH (PROG (Y)

gER‘ETQ {PRINT (D0 Xx})) éTERPRI))
PROGZ (PRINTRED (QUOTE (EDIT OR FORGET

)} (SETQ Y {COND
((%gg?% (SETQ Y (RDFLX)) (QUOTE EDIT))

NIL X NIL))

((NULL (EQUAL (TRANSFORM Y (GET (q UOTE EDIT
) (QUOTE RULES))) Y)) (EDIT NIL X (LIST Y (QUOTE s$T0P))))
TY)) (syYsi v))
(T {PRINT (ouore 0K)))) sT0P))

This is the tronslation of the CHANGE SYS1 modification above.

177

PPN s i
v

AT

P T NI PN S

R e |

APPENDIX 3

LIST OF MODIFICATIONS

5vs15n1 (S;§XN§C?ND
IST (PRINT (DO X))))) BEFORE)

L

TRANSLATE $1 AS (EITHER
; {NOT ATOM
0

. /x

))
} ($ ADD (z (EITHER
)} TRANSLATE RULES) EXIT) TRANSLATE RULES)

(TRANSLATE
(TELLISIT(EITHER

$1 / (ATOM) (EITHER
(FIRST

--)..) $1

($ (EITMER
SYSTEM3)
{(EITHER
SYSTEM2)
SYSTEM1)))
SYSTEM1)) 2 (= TRANSLATE -1) (EITHER
(= NORMAL))

1
(= NORMAL))))

(TRANSLATE
{-- END (BACKTO BEG) $1 § END --)

AS
(== (= TRANSLATE -3) --)}

{TRANSLATE
{(-- DO $1 / (NOT ATOM) --) .

AS
© (e~ (PROG2 (= TRANSLATE 3) NIL) --}}

(TRANSLATE
(-- BIND {EITHcR
{Sl / ATOH);

$1)) 1--)

1?9

BT JPR B P——

[R e N VULUE PR RN e "L PR S T SUIPPATF VRN S 1 L TIPS oo SIS ST IV R . S

L R e S X T A B s e e e

AS
(-- sATTACH (CONS (EITHER
= CONS QUOTE 1);
(= TRANSLATE 1))

) o)) (= TRANSLATE 5)) (CDOR HISTORY)

(TRANSLATE
.AS (-- SAVE $1 ON $1 -.)

(-- (SETQ 5 (CONS (= TRANSLATE 3) §)) --))

(TRANSLATE
(-« POP $1 --)

(-- (SETQ 3 (CDR 3)) --))

{TRANSLATE
(-- IGNORE --)
AS

(-- NIL --))

(TRANSLATE
(~- QUIT ..)
AS

{-- (LIST NIL) --)) .

(TRANSLATE
(X IS $ (EITHER
sv MEANS)
MEANS)) $1)

($ ADD (3 (EITHER

($1 ($* SSET FOO ((/T -1) (QUOTE (= TRANSLATE (/T 2))
) (QUOTE (= TRAWSLATE (/T -2 =210
(($* SSET FOO ({/T -1) (QUOTE (= TRANSLATE (/1 2

1)} 1S RYKES))

{TRANSLATE
{-- $1 IS (EITHER

(NOT)

--) (EITHER .

(= (COPYTOP (GET (QUOTE IS) {QUOTE RULES))))) .-)
(-- ((EITHER

(= (LIST (QUOTE NULL) F00))
(= F00;)) --))

AS

180

- M“"" a
PR . e o PO 1 Bk e s
JrompEE E e e e i B o L T VT S S SOy o P

i

(TRANSLATE
(-~ TO (EITHER
(($1 7 (NOT runcrrouv) $))
AS -s) (REPEAT 1 $1 AND) $1)

(-- (PROG (EITHER

(/7 3N

NIL))
REPEAT (QUOTE (= TRANSLATE 1}))
= TRANSLATE -1)))}

(TRANSLATE b
(s { J (NILL) (REPEAT IF $1 THEN $1) (EITHER

SE $1)
-~) (EITHER

(END --) "
--)) |

-
(-~ (COND ’
REPEAT ((= TRANSLATE 2) (= TRANSLATE 4}))
EITHER
((T (= TRANSLATE 2)})
((T NIL)))) (EITHER

(2) . : |
-) . :
{TRANSLATE
[-- IF $1)

5
(-- (SYSTEM4 (= TRANSLATE 3))))

(TRANSLATE
(-- AND (BACK 2) (REPEAT $1 AND) $1 --)

s
" (-;)(AND (REPEAT (QUOTE {= TRANSLATE 1))) (= TRANSLATE -2

(TRANSLATE ‘
(-- OR (BACK 2) (REPEAT $1 OR) $1 --)

:? (-;)(OR {REPEAT (QUOTE (= TRANSLATE 1)) (= TRANSLATE -2

|

181

ﬂﬁ oy P R S TR) {

[ARV T v P S S PRSP ST § -

|

[N - LY . 2 . .
R i L T & T BRI R~ Pr VNI SRRt

P s ST L

e LB T A e N T

o e N e e TS L ey s

(X IS A MEMBER OF Y MEANS MEMBER)
(X I3 A NUMBER MEANS NUMBERP)

(X IS (EITHER
AN ATOM;

ATOMIC) MEANS ATOM)

(X IS GREATER THAN Y MEANS GREATERP)

(X IS LESS THAN Y MEANS LESSP)
(X IS EQUAL TO Y MEANS EQUAL)
- (X IS NULL MEANS NULL)

(TRANSLATE
(DEFINE $1 (EITHER
((FEXPR) ($SET FOO (GUOTE -1)))
$1 ($SET FOO (= LENGTH (= CAR

LA
gi)))

NIL = TRA TE -
(rexpn))) (_ TRANSLATE -1)))

())

{TRANSLATE
(-~ RETURN WITH $1 ..)

(-~ (LIST (= TRANSLATE -2)) --))

(TRANSLATE
(-~ (EITHER
. (SEARCHF)
(COUNTF)
(SEARCHP)
(COUNTP)

(s

-y)
AS

182

-1
($SET FOO (QUOTE 0)))) = As --)))))

($ DEFLIST (({» CAR (= PUT (= FOO) {= CAR 2) ARGS)) (LAMBOA
(EITHER

) (EITHER

(LgSI;)) $1 81 7 (NOT ATOM) (EITHER

(-~ (2 3 (= cONs QuoTE 4) HISTORY) -1))

B W—Ww.,

L 0 g 2. s s i N o~ ot asies” ™ N ity e o,
AT Ay SRS waim ETER S AN o - R o Y 4

TSRS 5 TowE mw

(TRANSLATE
s (-~ BREAK $1 --)_

(-~ (BREAK1 NIL T (ADVICE)
2 E? (CAADR HISTORY) '
CAADR HISTORY))

S ' (COND
) (CAADDR HISTORY))
KS TYTAB (= CONS QUOTE 3)

(CON
VALUE
) (co

. ADD (CHANGE TRANSLATE RULES)

Y (TRANSLATE
3 (CHANGE $1 (EITHER
($1 7 (ATOM))
--) (REPEAT ((REPEAT $ $1 / (NOT ATOM)) $)))

(s E?IT 2 (EITHER

’ (= NORMAL)))} ((REPEA?Y ((REPEAT M (/C 1 1) 1 (= TRANSLATE
“2)) (/€1 2))) STOP)) EXIT)

b rEmees wmiaesmT n

(TRANSLATE’
(TELL $1 (

e T

AFTER)
;NSTEAD 0F)) (EITHER

1
is ADVICE))) (EITHER
$1 /7 (ATOM))
$1)))

(s EDIT 2 (EITHER

(' QORTAL))) ($SET FOO (== (EfTHER

i 1 ‘
¢ (2 TRANSLATE 1) (BACKTO ADVICE) UP1)))) ($SET FIE ;i

¥ 3BEFORE§
AS

(== (EITHER

[

1
goxxge {** (= TRANSLATE 1))))))) (((EITHER

T

INSERT i- FIE)) BEFORE ('* (- F00)))

INSERT *’ . AFTER (** (= FOQ 2

REPLACE (** (- roo) RITH (** - FIE)) stoP))

Ve Ead e iy e e

183

i e e SRR S P el BRGNS S T 017 e et e M T b BT b i it e A v

R e e

- R e S L e ey S DR S e S e

P ERERT Rt e s e Ay

(TRANSLATE
(USE (EITHER
($1 FOR (EITHER
$1 $51)

=)) (E1THER
{BUT S;

AS
) (EITHER

Q MAME ($* QUOTE ({EITHER

(CHANGE (/7 2 1

© ((= NORMAL))
2)) (SET
/; 23)

(/T 21005) (seTq VAL ($* QUOTE (EITHER
/;)2 3) '
f' NORMAL))
(1' NORMAL)}))) (EITHER
2
5:3)))

(DEFINE NAME1 (X Y) AS CONS * ALVICE DEFINE LIST LIST Y
LIST ' LAMBDA NIL CDR UNFLATTEN X)

DEFLIST ({{NAME1 (LAMBDA (x Y) (CONS (QUOTE ADVICE) {DEFINE
)sgifg)(txgrsngsxsr (QUUTE LAMBOA) KIL (COR (UNFLATTEX X))

(TRANSLATE
(Nk?glfl $ IN $1 (EITHER

==})

{CHANGE -2 -1 (FLIP
$ (= TRANSLATE 3) (BACKTO ADVICE) upt §!
Y 1) (QUOTE 1) ((QUCTE =) NAMS1 (QUOTE -2) 2) (QUOTE -1))

AS

{TPANSLATE
(-~ (EITHER
((EITHER
sﬂAPLIST)
MAP)))
((EITHER
{MAPCAR)

a¢ (MAPC))")) $2 (31 7 (NOT &g FUNCTION) --) -.)
(== ((EITHER
/T

2 1)
MARLEST)

MAR}) (= TRANSLATE 3; (FUNCTION (LAMBDA (X} (EITHER
{{- TRANSLATE (/T 4)))

) oy ® SUBST (CAR X) X (= TRANSLATE (/T an))

184

Aty

o ;zA!HI!lIIlllllIllIIlU-"'.H!!l!U'lF!ngii!“‘F‘"‘" v ——

: . l"'\“st.“s“."
N . . - e gt . " .
e iaud i das & TS R Y TR T v o Uy Wy S <o v el gl w halidnd

(TRANSLATE
s {-- INCREMENT $1 --)

(-~ (SETQ 3 (ADD1 3)) --))

(TRANSLATE
((EITHER
BEFORE $1)
AFTER $1)
$1 $1)
$1)} t --)
(ETTHER

AS
{ (TEL

[
——r—

bt gt N PO

1
2
(

i (1 (= NORMAL))) 00 --))

(CHANGE SYS1 (REPLACE PRINT UP1 WITH (PROG (V)
IF (ERSETQ PRINT DO X)

THEN sTERPRI)
1f PROG2 PRINTRED * (EDIT OR FORGET IT) SETQ Y IF
(SETQ Y (RDFLX)) IS EQUAL TO ' EDIT THEN (EDIT NIL X NIL)
IF ¥ 15 EQUAL TO ' PILOT THEN (PROG2 SYSTEM X) IF (TRANSFORM
GE' ' EDIT ' RULES) IS NOT EQUAL TO ¥ THEN (EDIT NIL X LIST
* STOP) ELSE Y) ‘
THEN (SYS1 Y)
ELSE (PRINT ' OK)))

EDIT (5YsS1 BEEORE {(REPLACE PRINT UP! WITH (PROG (Y)
N

OND
((gsnsero (PRINT (DO X))) (TERPRI))

((PROG2 (PRINTRED (QUOTE (EDIT OR FORGET IT)
}) (SETQ ¥ (COND :

((EQUAL (SETQ Y (ROFLX)) (QUOTE EDIT)) (EDIT
NIL X RIL))

((NULL (EQUAL (TRANSFORM Y (GET (QUOTE EDIT
) (QUOTE RULES))) Y)) (EDIT NIL X (LIST Y (QUOTE STGP))))

fT Y)))) (sys] v;)
(T (PRINT (QUOTE 0X)))))) s109))

F
¥
\J

i85

;imquW§*!$'%4ﬁ3mﬂﬂ* R 2 opm——yW
S e D Y S s Y s g Pl ¥ AN 4&&(&."&&%»‘.‘.;&%«»5, e e R L e L T R .‘-.i 4

BIBLIOGRAPHY

.4.,,.;_.,

[1] Berkeley, ELC., and‘Bobrow, D.G., (eds.) The Programming

e g gt

Language LISP: 1Its Operation and'Agplications, Informa-

tion International, Inc., Cambridge, Massachusetts, 1964

{2] Black, F., "A Deductive Question Answering Svstem," Ph.D.
Thesis in Applied Mathematics, Harvard University,

Cambridge, Massachusetts, June, 1964

TR L e Rl e, e

{3} Bobrow, D.G., "A Question Answering System for High

5 e

School Algebra Word Problems," Proc. FJCC, Spartan Press,

Baltimore, Maryland, 1964

[4] s“obrow, D.G., "Natural Language Input for a Computer
Problem Solving System," Ph.D. Thesis in Matchematics,

M.1.T., Cambridge, Massachusetts, feptember, 1964

[5] Bobrow, D.G., "METEOR: A LISP Interpreter fur String

Transformations,” in {1)

[6] Bobrow, D.G., "The Comit Feature in LISP 11," M.I.T,
Project MAC Memo M-219, Cambridge, Massachusetts,

i February 18, 1965

{71 Bobrow, D.G., and Teitelman, W., "Format-Directed List
Processing in LISP,” BBN Peport #1366, Bolt Beranek and

Newman Inc., Cambridge, Massachusettg, April 1966

f 187

TN T e T R B B SO BT it

T B R L BT e ek P PN A e ¥ s ol o SRS il 1 st s pebior i € AT i ML AT L | RE 0 e Bl k- el ¢ S AN T e A

i et ——

P 8]

; 9]

(10]

f11]

| | [12]
{13}

[14]

(15)

{16)

Bobrow, D.G., Darley, D., Murphy, D., Solomon, €.J.,

and Teitelman, W., "The BBN LISP System," BBN Report

#1346, Bolt Beranek and Neﬁman Inc., Cambridge,

Massachusetts, February 1966

:) K .
Cohen, K., and Wegstein, J.A., "AXLE: An Axiomatic Lang-

uage for sgring Transfcrmations,™ Comm. ACM 8, 11,/

November, 1965

" Crisman, P.A., (ed.) The Compatible Time-Sharing System =

A Programmer's Guide, Second Edition, M,I.T. Press,

Cambridge, Massachusetts, 1965

Daley, R.C., and Garman, C., "ED: A Context Editor for

Card Image Piles,”™ M,I.T. Project MAC Memo M-195,
Cambridge, Massachusetts, March 15, 1965

chusetts, November 15, 1963

‘Edwatds, D.J., and Minsky, M.L., "Recent Improvements in

DDT" M.1.T. Project MAC Memo M-60, Cambridge, Massa-

Engleman, €., "MATHLAB: A Program for On-Line Machine

Assistance for Symbolic Computations,® Proc. FJCC,

Spartan Press, Baltimore, Maryland, 1965

Faro, R.M., “The MAC System: The Computer Utility
Approach,” IEEE Specttum,>January, 1965

Farber, D.J., Griswood, R.E., and Polawsky, I.P.,

®SNOBOL, A String Manipulation Language,® JACM II,

1964

1,

Feigenbaum, E., and Feldman, J., (eds.) Computers and

Thought, McGraw Hill, New York, 1963

188

f{17] Geldard, Frank A., (ed.) Communication Processes, Nato

Conference Series, Vol. 4, Pergammon Press, New York,
1965, (Proceedings of 2 Symposium held in Washington
in 1963)

[18) Gray, P., The Encyclopedia of the Biological Sciences,

pPp 964-986, Reinhold Publishing, New York, 1961

[{19] Guzman, A., and McIntosh, H.V., "CONVERT" to appear in

Comm, ACM, August, 1966

LeEge i

(20} Johnson, T.E., "Sketchpad I11: A Computer Frogram for

o

Drawing in Three Dimensions,"™ Proc SJCC, Spartan Press,

Baltimore, Maryland, 1963

[21]) KXaplow, R., Strong, S., and Brackett, J., "MAP: A
System for On-Line Mathematical Analysis,™ M.I.T.
Project MAC Report TR-24, Cambridge, Massachusetts,

January, 1966

(22} Licklider, J.C.R., "Man-Computer Symbiosis," IRE

Transactions on Human Factors in Elsctronics, March 1960

¥ [23] Licklider, J.C.R., and Clark, W.E., "Oa-Line Man Compu-
ter Communication,” Proc. SJCC, Spartan Press, Baltimore,

Maryland, 1962

{24) Licklider, J.C.R., "Problems in Man~Computer Communica-

tion,” in (17}
{25) Licklider, J.C.R. Introductory Remarks in [17)

f{26] Lindgren, N., "Human factors in Enyineering, Part 1I -

Advanced Man-Machine Systems and Concepts,™ 1EEE

Spectrum, April, 1966

189

W . T wme—————s g

T L N AR S TN Iy o P ETIN R § S T r——ee apr— Soy ypeye

h

G Y BB I hemn aE S T b g s iy b R A Y Wi T 6 P bt daa WIS o B LT o e v b L I SR U P Y

S S 1 e s L NN P UV R T RS A W

bk bipn, o [B PO e e

res

127} .Martin, W.A., and Hart, T. "Syntax ana Display of
Mathematical Expressions,” M.I.T. Project MAC Memo
M-257, July 29, 1965

(28] Martin, W.A,, "Time-Shaiing LISP," M.I.T. Project MAC

5 . Memo M-153

[29] Martin, W.A., "A Symbolic Mathematical Laboratory,” Ph.D. |
: : : Thesis in Electrical Engineering, M.Z.T., Project MAC,

Cambridge, Massachusetts, (In preparation) i

{30} Maurer, W.D., "Computer Experiments in Finite Algebra,"
M.1.T. Project MAC Memo M-246, Cambridge, Massachusetts,
June 14, 1965 .

{31] McCarthy, J., "Programs wit> Common Sense,” Proc. Symp.

on Mech. of Thought Prncesses 1, Hxéo, tondon, 1959

! ' {32} McCarthy, J., "Recursive Functions of Symbolic Ex~
‘ pressions,” Comm. ACM, April, 1960

[33] McCarthy, J., et al, LISP 1.5 Programmers Manual, M.I.T.

Fress, Cambridge, Massachusetts, 1963
[34) Miller, G.A., "Man-Computer Interaction,” in [17]

{351 Minsky, M.L., “Steps Toward Aréificial Intelligence,”
in 115)‘ '

{36} Mlnsky,‘ﬂ.L., "A Selected Descriptor-Indexed Biblio-
} B
graphy tg the Literature on Artificial Intelligence,
(.
in t1e} |!

{37] Minsky, M.L., “"MATHSCOPE =~ A Proposal for a Mathematical
Manipulation-Display System,” M.I.T. Project MAC Memo
M-118, Cambridge, Massachusetts, November 18, 1963

190

T f g igte S ret b W 5 A S 5o < e . : . i .,WM - MM«! o e o

{38] Newell, A., Saaw, J.C,, and Simon, H.A., "Report on a

: General Problem Solving Program,” Intern. Confer.

Information Processing, UNESCO House, Paris, 1959

(39] NMNewell, A., “The Possibility of Planning Lanqguages in Man-

Computer Communication,™ in [(17]

140] Project MAC Progress Report II, July 1964-July 1965,

M.I.T. Press, Cambridge, Massachuset;s, 19¢G5

[41] Reintjes, J.F., and bertouzos, M.L., "Computer~Aidea
Design'of Electronic Circuits,” presented at WINCON Confer,,

Los Angeles, California, February 2-5, 1966

{42} Rudloe, H., "Tape Editor,” Program Write-up BBEN-101, Bolt
Beranek and Newman Ins., Cambridge, Massachusetts,

January 2, 1962

{431 Ssamson, P., "Music Compiler,® Program Write-up PDP-1,
M.I.T. RLE Computation Center, Cambridge, Massachusetts,

Circa 19¢€2

[44) Samson, P., "TECO,"” M.I!.T. Project MAC Memo M-250,
]

Cambridge, Massachusetts, July 23, 1965

{45} Schwartz, J.7., Coffman, E.G., and Welswman, C., "A
! General Purpose Time-Sharing System,” Prbc. sJcc,

Spartan Press, Baltimore, Maryland, 1964

{46] Sutherland, 1I.E., "SKETCHPAD: A Man-Machine Graphical
} Communication System,® Proc. SJCC, Spartan Press,

i Baltimore, Maryland, 1963

[47] Teitelman, W., "Real-Time Recognition of Hand-Drawn
Characters,” Proc. FJCC, Spartan Press, Baltimore,

Maryland, 1964

191

-
(48] Teitelman, W., “EDIT and BREAK Functions for LISP,"
M.1.T. Project MAC Memo M-264, Cambridge, Massachusetts,
September 1, 1965
i ‘ {49] Teitelman, W., "FLIP - A Format List Processor,” M.I.T.
; Project MAC Memo M-263, Cambridge, Mussachusetts,
September 1, 1965
{50] Wantman, M.E., "CALCULAID: An cﬁn-nr{e System for Alge-
braic Computation and Analysis{"LM.I.T. Project MAC
Report TR-20, Cambridge, Massachusetts, September, 1965
[S1} Y¥Yngve, V., "COMIT Programmer's Reference Manual, M.I.T.
Press, Cambridge, Massachusetts, 1961
)) .
;
“‘ i
i
192
{
- T

AR O R T e AT e b SR T AT T e o e o o A S g PRI e ~~~“.‘M - mwﬂ‘ [

¥

G e S W AT cars i i T AT T

5 23 s e o o e RS 4 LA i L 0

S e e e

FIREINES

¢ BIOGRAPHICAL NOTE

13
: Warren Teitelman was born in Philadelphia on February 21,
941. He attended Miami Senior High school, Miami, Florida, and
3ceived a B.S. degree in Mathematics from the California Institute
t Technology in 1962, and an S.M, deqree in mathematics from the
1ssachusetts Institute of Technology in 1963,

Mr. Teitelman held several scholarships at Caltech from 1958
> 1952, was electcd to Tau Beta Pi, and upon graduating with honor,
1s awarded both National Science Foundation and National Defense
lucation Act Fellowships. At MIT, he was an NSF fellow and a re-
rarch assistant with Project MAC. He was elected to Sigma Xi in
163, and received the General Electric Prize in 1964,

. Mr. Teitelman has been interested in automatic computation and
mputer programming since 1959. He has been employed by the Syn-
iwrotron laboratory and the Computation Center at Caltech; the
r1stem Development Corporaticn of Santa Monica, California; Bolt,
tranek, and Newman, Inc., of Cambridge, Massachusetts; and Inform-
:ion International, Inc., also of Cambridge, He has accepted a
)1sition as Senior Scientist at Bolt, Beranek, and Newman, begin-

Lng June, 1566

His publications inciude:

w Methods for Real-Time Recognition of Hand-Drawn Characters,
Master's Thesis, Massachusetts Institute of Technology,
Department of Mathematics, June 1963

leal-Time Recognition of Hand-Drawn Characters," Proceedings of
the Fall Joint Computer Conference, Spartan Press, Baltimore,

Maryland, 1964

?LIP-A Format List Processor" MIT Prouject MAC Memo Mac-M-263,
September, 1965

3DIT and BREAK Functions for LISP" MIT Project MAC Memo Mac-M-264,
September, 1965

format Directed List-Processing In LISP" with D.G. Bobrow, BBN
Report #1366, Bolt Beranek and Newman Inc. Cambridge, Mass-

achusetts, April, 1966

*he BBN LISP System™ with D.G. Bobrow, et al, BBN Report #1346,
Bolt Beranek and Newman, Inc., Cambridge, Massachusetts,
February, 1966

193

Ly N - o St T 0 L erans U G L

WPl WGl g Ve WP T i N e v, e . .

LR U R T 1

P

€t ———— ALY

ears

R

-
i
P
i
{
ﬁk
: UNCLASSIPIED
Security Classification
- ‘ , DOCUMENT CONTROL CATA - R&D
E ' ¢ (Docwrity closeiBcation ol Nile, bady o ad - st be sntesced whon the overall v epost ta clansified)
' 1. OMIC NATING ACTIVITY (Corparats awiher) . 218. REPORY SECURITY CLASIFICATION
Msssachusetts Institute of Technology UNCLASSIFIED
i Project MAC . gRour)

4 3. mEPONT TivLE

PILOT: A Step Towsrd Man-Machine Symbiosis

£, 4. DESCRIPTIVE NOTRS (Trpe of repert and incluaive dotes)

Doctovel Thests, Mathemy ! 4

S, AUTHORIS) (Last name, liret pame. initiel,

Teitelnan, Werren

§. REPOARY DATR Ta. TOTAL NC. OF PANES . NG OF NEFS
September, 1966 ' 191 3!
E” . 08, CONTRACT ON ORANT NO_ 4. ORIGINAYOR'S REPORT NU“'(].('D
: . . Office of Revol Resesrch, Nonr-4102(01) MAC~-TR-32 (THESIS)
4 5. CROIECT MO,
» - n 0“8"89 . OYRER REPORT NOIS) (Any ¢iide ranbers that Day be
" AR 003-09-01 ororned s repeet)
; &

10, AVAILABILITY/IMITATION NOTICES

Distribution of this document is unlimited.

i 11, SUPPLEMENTARY ~OTRS 12. SPONIORING MILITARY ACTIVITY

) Advanced Research Projects Agency
A : None - 3N-200 Pentagon

5 ‘ : _Washington, D. C. 20301

3. Asstmact PILOT is a programming system, constructed in LISP, dcaigned to esse the
fomiliar program-development sequence: write code, run the program, make changes,
write more code, run the program again, etc. As a prorram becomes more complex,
making charges becomes harder and hexder, because the impilcations of changes sre
harder €o snticipste. In the PILOT system, the computer plays an active role in
this evolutionary process by allowing changes to be effected immediately, and in
ways that seem natursi to the user. The user of PILOT feels he {s giving advice
to the computer about the operation of his progrems, and that the system then
performs the necessavy work, PILOT is thus an interfsce between the user and his
program. monitoring both user requests and program operation. The user mav easily
wodify PILOT system operstion by giving it sdvice. This allows him to develop his
own langusge and gradually shift onto PILOT the burden of performing routine bdut
increasingly complicated tasks. In this way, he can concentrate on tonceptual
difticulties in the original problem, rsther than bogging down on the niggling tasks
+ adfting, rewriting, or adding to his programs. Two detsiled examples are

sented,

(14 wOROY
artiffcial intelligence Man~machine intersction Realstime computer systems
Computer problem solving Multiple-sccess computers Time~sharing
Heuristic progremming On-linc compater systems Time-shared computer systems

DD .22 1473 (M.LT.) NCLASSTPIED
. Security Classification

